CS420

Introduction to the Theory of Computation

Lecture 4: Manipulating theorems; data-structures

Tiago Cogumbreiro
Today we will learn...

1. More on the assert tactic
2. Defining data-structures in Coq
More on assert
Exercise 1

Lemma zero_in_middle:
 forall n m, n + 0 + m = n + m.
Proof.
 intros.
Exercise 1

Lemma zero_in_middle:
\[\forall n \; m, \; n + 0 + m = n + m. \]

Proof.
intros.

1. Using intermediate results: plus_n_0
2. Passing parameters to theorems: add_assoc
Exercise 1: Solution 1

1. Using intermediate results: plus_n_0
Exercise 1: Solution 1

1. Using intermediate results: plus_n_0

Lemma zero_in_middle:
 forall n m, n + 0 + m = n + m.
Proof.
 intros.
 assert (n + 0 = n). {
 rewrite plus_n_0.
 reflexivity.
 }
 rewrite H.
 reflexivity.
Qed.
Exercise 2: add is associative

Lemma add_assoc:
 forall n m o,
 (n + m) + o = n + (m + o).
Lemma add_assoc:
 \(\forall n \ m \ o, \)
 \((n + m) + o = n + (m + o)\).

Proof.
 intros.
 induction n. {
 simpl.
 reflexivity.
 }
 simpl.
 rewrite IHn.
 reflexivity.
Qed.
Exercise 1: Solution 2

2. Passing parameters to theorems: add_assoc

Lemma zero_in_middle:
 \(\forall n \ m, n + 0 + m = n + m. \)

Proof.
2. Passing parameters to theorems: add_assoc

Lemma zero_in_middle:
forall n m, n + 0 + m = n + m.

Proof.

intros.
assert (Hx := add_assoc n 0 m).
rewrite Hx.
simpl.
reflexivity.
Qed.
Lemma zero_in_middle_2:
 \[\forall n, m, n + (0 + m) = n + m. \]
Proof.
Lemma zero_in_middle_2:
 \(\forall n \, m, n + (0 + m) = n + m. \)

Proof.

You are now ready to conclude HW1
How do we define a data structure that holds two nats?
A pair of nats

Inductive natprod : Type :=
| pair : nat → nat → natprod.

Notation "(x , y)" := (pair x y).

Explicit vs implicit: be cautious when declaring notations, they make your code harder to understand.
How do we read the contents of a pair?
Accessors of a pair
Accessors of a pair

Definition \(\text{fst} (p : \text{natprod}) : \text{nat} := \)
Accessors of a pair

Definition \(\text{fst} \) (p : natprod) : nat :=
 match p with
 | pair x y ⇒ x
 end.

Definition \(\text{snd} \) (p : natprod) : nat :=
 match p with
 | (x, y) ⇒ y (* using notations in a pattern to be matched *)
 end.
How do we prove the correctness of our accessors?

(What do we expect fst/snd to do?)
Proving the correctness of our accessors:

Theorem surjective_pairing : \(\forall (p : \text{natprod}), \quad p = (\text{fst } p, \text{snd } p) \).

Proof.

\[
\text{intros } p.
\]

1 subgoal
p : natprod
---------------------------------(1/1)
p = (\text{fst } p, \text{snd } p)

- **Does simpl work?** Does **reflexivity work?** Does **destruct work?** What about **induction?**
How do we define a list of nats?
A list of nats

Inductive natlist : Type :=
| nil : natlist
| cons : nat → natlist → natlist.

(* You don't need to learn notations, just be aware of its existence.*)

Notation "x :: 1" := (cons x 1) (at level 60, right associativity).
Notation "[]" := nil.
Notation "[x ; .. ; y]" := (cons x .. (cons y nil) ..).

Compute cons 1 (cons 2 (cons 3 nil)).

outputs:
= [1; 2; 3]
: list nat
How do we concatenate two lists?
Concatenating two lists

Fixpoint app (l1 l2 : natlist) : natlist :=
 match l1 with
 | nil => l2
 | h :: t => h :: (app t l2)
end.

Notation "x ++ y" := (app x y) (right associativity, at level 60).
Theorem nil_app_l : forall l:natlist, [] ++ l = l.

Proof.

intros l.

Can we prove this with reflexivity? Why?
Proving results on list concatenation

Theorem nil_app_l : \forall l:natlist, [] ++ l = l.
Proof.
 intros l.

Can we prove this with reflexivity? Why?

 reflexivity.
Qed.
Nil is a neutral element wrt app

Theorem nil_app_l : forall l:natlist, l ++ [] = l.

Proof.

```plaintext
intros l.
```

Can we prove this with reflexivity? Why?
Nil is a neutral element wrt app

Theorem nil_app_l : forall l:natlist, l ++ [] = l.
Proof.
```
intros l.
```

Can we prove this with reflexivity? Why?

In environment
```
l : natlist
```
Unable to unify "l" with "l ++ []".

How can we prove this result?
We need an induction principle of \texttt{natlist}

For some property P we want to prove.

- Show that $P([\])$ holds.
- Given the induction hypothesis $P(l)$ and some number n, show that $P(n :: l)$ holds.

Conclude that $P(l)$ holds for all l.

How do we know this principle? Hint: compare \texttt{natlist} with \texttt{nat}.
How do we know the induction principle?

Use search

```latex
Search natlist.
```

which outputs

```latex
nil : natlist
cons : nat \to natlist \to natlist
(* trimmed output *)
```

```latex
natlist_ind:
\[ \forall P : \text{natlist} \to \text{Prop}, \]
\[ P \[\] \to \]
\[ (\forall n : \text{nat} \ (l : \text{natlist}), \ P \ l \to P \ (n::l)) \to \forall n : \text{natlist}, \ P \ n \]
```
Theorem nil_app_r : forall l:natlist,
 l ++ [] = l.

Proof.
 intros l.
 induction l.
 - reflexivity.
 -

yields

1 subgoal
n : nat
l : natlist
IHl : l ++ [] = l
 ---------------------------(1/1)
(n :: l) ++ [] = n :: l
Nil is neutral on the right (2/2)

1 subgoal
n : nat
l : natlist
IHl : l ++ [] = l

(1/n) ++ [] = n :: l
Nil is neutral on the right (2/2)

1 subgoal
n : nat
l : natlist
IHl : l ++ [] = l

______________________________________(1/1)
(n :: l) ++ [] = n :: l

simpl. (* app (n::l) [] = n :: (app l []) *)
rewrite → IHl. (* n :: (app l []) = n :: l *)
reflexivity. (* conclude *)

Can we apply rewrite directly without simplifying?
Hint: before and after stepping through a tactic show/hide notations.
How do we state a theorem that leads to the same proof state (without ltac)?