
CS420

Introduction to the Theory of Computation

Lecture 2: Pattern matching; re�exivity

Tiago Cogumbreiro

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 1 / 21

Today we will learn…
Compound types

Pattern matching

Inductive types

Recursive functions

Proofs with forall

Chapter: Basics.v

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 2 / 21

https://softwarefoundations.cis.upenn.edu/lf-current/Basics.html#lab18

On studying effectively for this content

Exercises structure

1. Open the chapter �le with CoqIDE: that �le is the chapter we are covering

2. Read the chapter and �ll in any exercise

3. To complete an assignment ensure you have 0 occurrences of Admitted

(demo)

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 3 / 21

Back learning the basics

4 / 21

Your �rst proof

Example test_next_weekday:
 next_weekday (next_weekday saturday) = tuesday.
Proof.
 simpl. (* simplify left-hand side *)
 reflexivity. (* use reflexivity since we have tuesday = tuesday *)
Qed.

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 5 / 21

Your �rst proof

Example test_next_weekday:
 next_weekday (next_weekday saturday) = tuesday.
Proof.
 simpl. (* simplify left-hand side *)
 reflexivity. (* use reflexivity since we have tuesday = tuesday *)
Qed.

Example pre�xes the name of the proposition we want to prove.

The return type (:) is a (logical) proposition stating that two values are equal (after
evaluation).

The body of function test_next_weekday uses the ltac proof language.

The dot (.) after the type puts us in proof mode. (Read as "de�ned below".)

This is essentially a unit test.

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 5 / 21

Ltac: Coq's proof language
ltac is imperative! You can step through the state with CoqIDE

Proof begins an ltac-scope, yielding

1 subgoal
______________________________________(1/1)
next_weekday (next_weekday saturday) = tuesday
Tactic simpl evaluates expressions in a goal (normalizes them)

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 6 / 21

Ltac: Coq's proof language
1 subgoal
______________________________________(1/1)
tuesday = tuesday

reflexivity solves a goal with a pattern ?X = ?X

No more subgoals.
Qed ends an ltac-scope and ensures nothing is left to prove

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 7 / 21

Function types
Use Check to print the type of an expression:

Check next_weekday.

which outputs

next_weekday
 : day �> day
Function type day �> day takes one value of type day and returns a value of type day.

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 8 / 21

Compound types
Enumerated types are very simple. You can think of them as a typed collection of constants.
We call each enumerated value a constructor.

 Inductive rgb : Type �=
 | red : rgb
 | green : rgb
 | blue : rgb.

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 9 / 21

Compound types
Enumerated types are very simple. You can think of them as a typed collection of constants.
We call each enumerated value a constructor.

 Inductive rgb : Type �=
 | red : rgb
 | green : rgb
 | blue : rgb.

A compound type builds on other existing types. Their constructors accept multiple
parameters, like functions do.

 Inductive color : Type �=
 | black : color
 | white : color
 | primary : rgb �> color.

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 9 / 21

Manipulating compound values

 Definition monochrome (c : color) : bool �=
 match c with
 | black �> true
 | white �> true
 | primary p �> false
 end.

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 10 / 21

Manipulating compound values

 Definition monochrome (c : color) : bool �=
 match c with
 | black �> true
 | white �> true
 | primary p �> false
 end.

We can use the place-holder keyword _ to mean a variable we do not mean to use.

 Definition monochrome (c : color) : bool �=
 match c with
 | black �> true
 | white �> true
 | primary _ �> false
 end.

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 10 / 21

Compound types
Allows you to: type-tag, �xed-number of values

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 11 / 21

Inductive types
How do we describe arbitrarily large/composed values?

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 12 / 21

Inductive types
How do we describe arbitrarily large/composed values?

Here's the de�nition of natural numbers, as found in the standard library:

Inductive nat : Type �=
 | O : nat
 | S : nat �> nat.

O is a constructor of type nat.
Think of the numeral 0.

If n is an expression of type nat, then S n is also an expression of type nat.
Think of expression n + 1.

What's the difference between nat and uint32?

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 12 / 21

Recursive functions
Recursive functions are declared differently with Fixpoint, rather than Definition.

Fixpoint evenb (n:nat) : bool �=
 match n with
 | O �> true
 | S O �> false
 | S (S n') �> evenb n'
 end.

Using Definition instead of Fixpoint will throw the following error:

The reference evenb was not found in the current environment.
Not all recursive functions can be described. Coq has to understand that one value is
getting "smaller."

All functions must be total: all inputs must produce one output. All functions must
terminate.

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 13 / 21

An example

Example plus_O_4 : 0 + 5 = 4.
Proof.

How do we prove this?

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 14 / 21

An example

Example plus_O_4 : 0 + 5 = 4.
Proof.

How do we prove this?

We cannot. This is unprovable.

Because it is unprovable, there is no proof script that can satisfy this claim.

Instead, we can prove the following (later)

Example plus_O_5_not_4 : 0 + 5 <> 4.

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 14 / 21

Another example

Example plus_O_5 : 0 + 5 = 5.
Proof.

How do we prove this? We "know" it is true, but why do we know it is true?

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 15 / 21

Another example

Example plus_O_5 : 0 + 5 = 5.
Proof.

How do we prove this? We "know" it is true, but why do we know it is true?

There are two ways:

1. We understand the de�nition of plus and use that to our advantage.

2. We brute-force and try the tactics we know (simpl, reflexivity)

Fixpoint plus (n : nat) (m : nat) : nat �=
 match n with
 | 0 �> m
 | S n' �> S (plus n' m)
 end.
(* See Nat.add *)
Notation "x + y" �= (plus x y) (at level 50, left associativity) : nat_scope.

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 15 / 21

Another example

Example plus_O_6 : 0 + 6 = 6.
Proof.

How do we prove this?

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 16 / 21

Another example

Example plus_O_6 : 0 + 6 = 6.
Proof.

How do we prove this?

The same as we proved plus_0_5. This result is true for any natural n!

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 16 / 21

Ranging over all elements of a set

Theorem plus_O_n : forall n : nat, 0 + n = n.
Proof.
 intros n.
 simpl.
 reflexivity.
Qed.

Theorem is just an alias for Example and Definition.

forall introduces a variable of a given type, eg nat; the logical statement must be true
for all elements of the type of that variable.

Tactic intros is the dual of forall in the tactics language

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 17 / 21

Forall example
Given

1 subgoal
______________________________________(1/1)
forall n : nat, 0 + n = n

and applying intros n yields

1 subgoal
n : nat
______________________________________(1/1)
0 + n = n

The n is a variable name of your choosing.

Try replacing intros n by intros m.

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 18 / 21

simpl and reflexivity work under forall
1 subgoal
______________________________________(1/1)
forall n : nat, 0 + n = n

Applying simpl yields

1 subgoal
______________________________________(1/1)
forall n : nat, n = n
Applying reflexivity yields

No more subgoals.

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 19 / 21

reflexivity also simpli�es terms

1 subgoal
______________________________________(1/1)
forall n : nat, 0 + n = n

Applying reflexivity yields

No more subgoals.

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 20 / 21

Summary
simpl and reflexivity work under forall binders

simpl only unfolds de�nitions of the goal; does not conclude a proof

reflexivity concludes proofs and simpli�es

CS420 ☽ Pattern matching; re�exivity ☽ Lecture 2 ☽ Tiago Cogumbreiro 21 / 21

