CS420
Introduction to the Theory of Computation
Lecture 2: Pattern matching; reflexivity
Tiago Cogumbreiro
Today we will learn...

- Compound types
- Pattern matching
- Inductive types
- Recursive functions
- Proofs with forall

Chapter: Basics.v
On studying effectively for this content

Exercises structure

1. Open the chapter file with CoqIDE: that file is the chapter we are covering
2. Read the chapter and fill in any exercise
3. To complete an assignment ensure you have 0 occurrences of Admitted

(demo)
Back learning the basics
Example test_next_weekday:
 next_weekday (next_weekday saturday) = tuesday.

Proof.
 simpl. (* simplify left-hand side *)
 reflexivity. (* use reflexivity since we have tuesday = tuesday *)

Qed.
Example test_next_weekday:
 next_weekday (next_weekday saturday) = tuesday.

Proof.
 simpl. (* simplify left-hand side *)
 reflexivity. (* use reflexivity since we have tuesday = tuesday *)
Qed.

- Example prefixs the name of the proposition we want to prove.
- The return type (:) is a (logical) proposition stating that two values are equal (after evaluation).
- The body of function test_next_weekday uses the ltac proof language.
- The dot (.) after the type puts us in proof mode. (Read as "defined below".)
- This is essentially a unit test.
Ltac: Coq's proof language

Ltac is **imperative**! You can step through the state with CoqIDE. Proof begins an ltac-scope, yielding

1 subgoal

---(1/1)
next_weekday (next_weekday saturday) = tuesday

Tactic `simpl` evaluates expressions in a goal (normalizes them)
Ltac: Coq's proof language

1 subgoal
-------------------------------(1/1)
tuesday = tuesday

- reflexivity solves a goal with a pattern $?X = ?X$

No more subgoals.
- Qed ends an ltac-scope and ensures nothing is left to prove
Function types

Use **Check** to print the type of an expression:

```plaintext
Check next_weekday.
```

which outputs

```plaintext
next_weekday :
    day → day
```

Function type `day → day` takes one value of type `day` and returns a value of type `day`.
Compound types

Enumerated types are very simple. You can think of them as a typed collection of constants. We call each enumerated value a **constructor**.

```lean
Inductive rgb : Type :=
  | red : rgb
  | green : rgb
  | blue : rgb.
```
Enumerated types are very simple. You can think of them as a typed collection of constants. We call each enumerated value a **constructor**.

```coffeescript
Inductive rgb : Type :=
  | red : rgb
  | green : rgb
  | blue : rgb.
```

A **compound type** builds on other existing types. Their constructors accept **multiple parameters**, like functions do.

```coffeescript
Inductive color : Type :=
  | black : color
  | white : color
  | primary : rgb → color.
```
Manipulating compound values

Definition monochrome (c : color) : bool :=
 match c with
 | black ⇒ true
 | white ⇒ true
 | primary p ⇒ false
end.
Manipulating compound values

Definition monochrome (c : color) : bool :=
 match c with
 | black ⇒ true
 | white ⇒ true
 | primary p ⇒ false
end.

We can use the place-holder keyword `_` to mean a variable we do not mean to use.

Definition monochrome (c : color) : bool :=
 match c with
 | black ⇒ true
 | white ⇒ true
 | primary _ ⇒ false
end.
Compound types

Allows you to: type-tag, fixed-number of values
Inductive types

How do we describe arbitrarily large/composed values?
Inductive types

How do we describe arbitrarily large/composed values?

Here's the definition of natural numbers, as found in the standard library:

```plaintext
Inductive nat : Type :=
| O : nat
| S : nat -> nat.
```

- `O` is a constructor of type `nat`.
 Think of the numeral 0.

- If `n` is an expression of type `nat`, then `S n` is also an expression of type `nat`.
 Think of expression `n + 1.

What's the difference between `nat` and `uint32`?
Recursive functions

Recursive functions are declared differently with Fixpoint, rather than Definition.

```coq
Fixpoint evenb (n:nat) : bool :=
  match n with
  | O    ⇒ true
  | S O  ⇒ false
  | S (S n') ⇒ evenb n'
  end.
```

Using Definition instead of Fixpoint will throw the following error:
The reference evenb was not found in the current environment.

Not all recursive functions can be described. Coq has to understand that one value is getting "smaller."

All functions must be total: all inputs must produce one output. **All functions must terminate.**
An example

Example plus_0_4 : \(0 + 5 = 4\).

Proof.

How do we prove this?
An example

Example \texttt{plus_0_4} : \texttt{0 + 5 = 4}.

Proof.

How do we prove this?

- \textbf{We cannot.} This is unprovable.
- Because it is unprovable, there is no proof script that can satisfy this claim.

Instead, we can prove the following (later)

Example \texttt{plus_0_5_not_4} : \texttt{0 + 5 <> 4}.
Another example

Example plus_0_5 : 0 + 5 = 5.
Proof.

How do we prove this? We "know" it is true, but why do we know it is true?
Another example

Example plus_0_5 : 0 + 5 = 5.
Proof.

How do we prove this? We "know" it is true, but why do we know it is true?

There are two ways:

1. We understand the definition of plus and use that to our advantage.
2. We brute-force and try the tactics we know (simpl, reflexivity)

Fixpoint plus (n : nat) (m : nat) : nat :=
match n with
| 0 => m
| S n' => S (plus n' m)
end.
(* See Nat.add *)
Notation "x + y" := (plus x y) (at level 50, left associativity) : nat_scope.
Another example

Example plus_0_6 : 0 + 6 = 6.
Proof.

How do we prove this?
Another example

Example plus_0_6 : 0 + 6 = 6.
Proof.

How do we prove this?

The same as we proved plus_0_5. This result is true for any natural \(n \)!
Ranging over all elements of a set

```
Theorem plus_0_n : forall n : nat, 0 + n = n.
Proof.
  intros n.
  simpl.
  reflexivity.
Qed.
```

- Theorem is just an alias for Example and Definition.
- forall introduces a variable of a given type, eg nat; the logical statement must be true for all elements of the type of that variable.
- Tactic intros is the dual of forall in the tactics language.
Forall example

Given

1 subgoal
--(1/1)
forall n : nat, 0 + n = n

and applying intros n yields

1 subgoal
n : nat
--(1/1)
0 + n = n

The n is a variable name of your choosing.

Try replacing intros n by intros m.
simpl and reflexivity work under forall

1 subgoal
----------------------------------(1/1)
forall n : nat, 0 + n = n

Applying simpl yields
1 subgoal
----------------------------------(1/1)
forall n : nat, n = n
Applying reflexivity yields
No more subgoals.
reflexivity also simplifies terms

1 subgoal
______________________________________(1/1)
forall n : nat, 0 + n = n

Applying reflexivity yields
No more subgoals.
Summary

- `simpl` and `reflexivity` work under `forall` binders
- `simpl` only unfolds definitions of the `goal`; does not conclude a proof
- `reflexivity` concludes proofs and simplifies