CS420

Introduction to the Theory of Computation

| ecture 1: Introduction

Tiago Cogumbreiro

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



About the course ?/11

o Instructor: Tiago (FI X&) Cogumbreiro
e Classes: M01-0409 Room 409, 1st floor, McCormack
4:00pm to 5:15pm, Monday, Wednesday
e Office hours: (VIRTUAL) 2:00pm to 3:00pm Monday, Tuesday, and Wednesday

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Course webpage ?/11

o URL: cogumbreiro.github.io/teaching/cs420/f21/
e Holds the class schedule and the syllabus

Tiago Cogumbreiro Software Verification Lab & Email @umb.edu

Past editions: Spring 20, Fall 19
CS 420: Introduction to the Theory of Computation

Fall 2021

Syllabus

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro


https://cogumbreiro.github.io/teaching/cs420/f21/

Other resources ?/11

gitlab.com: Homework assignment PDFs
gradescope.com: Homework/mini-test submission site
blackboard.com: Quiz submission site

discord.com: Office hours, communication, Q&A

Make sure you have access to each of these sites!

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Final grade distribution

e 4 Mini-tests + lecture quizzes
+ 8 homework assignments

Mini-tests
24.0%

HW3-HW8

Quiz

HW1-HW2
12.0%

A,

UMASS
BOSTON

Grade Letter

95 < P A
90 = P <95 A-
85 = P <90 B
75 < P <85 B
70 < P <75 B-
65 =< P <70 C+
55 < P <65 C
50 = P <55 C-
45 < P <50 D+
40 < P <45 D
35 < P <40 D-

P <35 F

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Final grade adjustments ?/11

e |f there are fewer than 6 homework assignments with less than 35 points, your final

grade is at most 34 points.
e If there are fewer than 6 homework assignments with less than 50 points, your final

grade is at most 49 points.
o If there are fewer than 6 homework assignments with less than 70 points, your final

grade is at most 69 points.

CS420 ) Introduction ) Lecturel Y Tiago Cogumbreiro



Breadth versus depth ?/11

e Solve quizzes and mini-tests first, because they have a hard deadline of 24h.

e Solve homework assignments second, because have a soft deadline.
You can always resubmit any homework assignment.

e Prioritize (breadth) solving more assignments/exercises over
(depth) solving single assignment/exercise flawlessly.

Don't forget to fill today's quiz in Blackboard!

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Course requirements ?/11

Checklist

 Install Coq 8.13.2 (aka 2021.02.1): coq.inria.fr

Can you access Gradescope?

Can you access Blackboard?

Can you access #cs420 and #cs428-news in Discord? If not ask in fics420-1ounge
Can you access Gitlab? (The invites will be rolling out until this Friday)

Heads up

» Please, register using your UMB email address.

CS420 ) Introduction ) Lecturel Y Tiago Cogumbreiro


https://coq.inria.fr/

Course overview

9/42




Introduction to Theory of Computation ?/11

Formal Languages

| Understanding the limits of what computers and programs

e Regular languages
o Context-Free languages
e Turing-recognizable languages

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



A birdseye view of CS5420




What are the limits of programs?



Limits of computation ?/11

e Different classes of machines
e The limits of each of these classes
o What properties each class enjoys

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Limits of computation ?/11

e Different classes of machines
e The limits of each of these classes
o What properties each class enjoys

Classes of machines

Class of machine Applications
Finite Automata Parse regular expressions
Pushdown Automata  Parse structured data (programs)
Turing Machines Any program

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Techniques ?/11

o State-machines
Structure concurrency/parallelism/User Interfaces; UML diagrams

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Techniques 7

UMASS
BOSTON

e State-machines

Structure concurrency/parallelism/User Interfaces; UML diagrams

* Regular expressions (regex)
String matching rules

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro




Techniques 7

BOSTON

o State-machines
Structure concurrency/parallelism/User Interfaces; UML diagrams

* Regular expressions (regex)
String matching rules

e Grammars
Data specification; Parsing data

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro




Techniques ?/11

o State-machines
Structure concurrency/parallelism/User Interfaces; UML diagrams

* Regular expressions (regex)
String matching rules

e Grammars
Data specification; Parsing data

e Turing machines
Theory of computation

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Techniques ?/11

o State-machines
Structure concurrency/parallelism/User Interfaces; UML diagrams

* Regular expressions (regex)
String matching rules

e Grammars
Data specification; Parsing data

e Turing machines
Theory of computation

 Programs are proofs
Using a programming language to write formal proofs

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Some applications of formal
anguages

15/42




Use Case 1: DFA/NFA

Using a DFA/NFA to structure hardware usage

16/42




Use Case 1: DFA/NFA ?/11
Using a DFA/NFA to structure hardware usage

e Arduino is an open-source hardware to design microcontrollers
Programming can be difficult, because it is highly concurrent
Finite-state-machines structures the logical states of the hardware
Input: a string of hardware events

String acceptance is not interesting in this domain

Example

| The FSM represents the logical view of a micro-controller with a light switch

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Use Case ] ?/11

Declare states

State state_light_on(on_light_on_enter, NULL, &on_light_on_exit);
State state_light_off(on_light_off_enter, NULL, 8on_light_off_exit);

Fsm fsm(&state_light_off);
Source: platformio.org/lib/show/664/arduino-fsm

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro


https://platformio.org/lib/show/664/arduino-fsm

Use Case ] ?/11

Declare transitions

void setup() {
Serial.begin(9600);

fsm.add_transition(&state_light_on, &state_light_off,
FLIP_LIGHT_SWITCH,
&on_trans_light_on_light_off);

fsm.add_transition(&state_light_off, &state_light_on,
FLIP_LIGHT_SWITCH,
&on_trans_light_off_light_on);

}
Source: platformio.org/lib/show/664/arduino-fsm

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro


https://platformio.org/lib/show/664/arduino-fsm

Use Case ] ?/11

Code that runs on before/after states

void on_light_on_enter() {
Serial.println("Entering LIGHT_ON");

}

void on_light_on_exit() {
Serial.println("Exiting LIGHT_ON");

}

void on_light_off_enter() {
Serial.printIn("Entering LIGHT_OFF");

}

Source: platformio.org/lib/show/664/arduino-fsm

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro


https://platformio.org/lib/show/664/arduino-fsm

Use Case /

Regular Expressions: Input validation

21/42




Use Case ? ?/11

Regular Expressions: Input validation

| HTML includes regular expressions to perform client-side form validation.

<input id="uname" name="uname" type="text"
pattern="_([a-z]|[A-Z]|[0-9])+" minlength="4" maxlength="10">

_[a-zA-70-9]+

[a-zA-Z0-9] means any character beween a and z, or between A and Z, or between 8 and
9

R+ means repeat R one or more times

In this case, the username must start with an underscore _, and have one or more
letters/numbers

minlength and maxlength further restrict the string's length

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Use Case 3

Regular Expressions: Text manipulation

23/42




.

UMASS

Use Case 3

Regular Expressions: Text manipulation

Programming languages include regular expressions for fast and powerful text
manipulation.

Example (JS)

let txt1 "Hello World!";
let txt2 = txtl.replace(/[a-zA-Z]+/, "Bye");
console.log(txt2);

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Use Case 4
Parsing JSON

ATV




Grammar for JSON A

BOSTON

| ANTLR is a parser generator.

e Input: a grammar; Output: a parser, and data-structures that represent the parse tree
(known as a Concrete Syntax Tree)

e The HTML DOM is an example of an Abstract Syntax Tree

json: value;

obj: '{' pair (',' pair)* '}' [ "{' '}';
pair: STRING ':' value;

array: '[' value ('," value)* ']" | '[" ']';

value: STRING | NUMBER | obj | array | 'true' | 'false' | 'null';

Source: raw.githubusercontent.com/antlr/grammars-v4/master/json/JSON. g4

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



https://raw.githubusercontent.com/antlr/grammars-v4/master/json/JSON.g4

A grammar for JSON integers ?/11

NUMBER: '-'? INT ('.' [@-9] +)? EXP?;
fragment INT: '0' | [1-9] [0-9]*;

fragment EXP : [Ee] [+\-]? INT;
Source: raw.githubusercontent.com/antlr/grammars-v4/master/json/JSON. g4

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro


https://raw.githubusercontent.com/antlr/grammars-v4/master/json/JSON.g4

A grammar for JSON ?/11

> 1s *.java

JSONBaselListener.java JSONParser.java JSONVisitor.java
JSONBaseVisitor.java JSONLexer.java JSONListener. java
> cat JSONBaselistener. java

import org.antlr.v4.runtime.tree.ParseTreelistener;

* This interface defines a complete listener for a parse tree produced by
* {@link JSONParser}.
*/

public interface JSONListener extends ParseTreeListener {

* Enter a parse tree produced by {@link JSONParserfjson}.
* @param ctx the parse tree
*/

void enterJson(JSONParser.JsonContext ctx);

* Exit a parse tree produced by {@link JSONParserffjson}.
* @param ctx the parse tree
*/

void exitJson(JSONParser.JsonContext ctx);

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



CS420 A

o Study algorithms and abstractions
e Theoretical study of the boundaries of computing

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Course schedule ?/11

1. Learn the Coq programming language
2. Regular languages
o Design state machines
o Prove properties on regular languages
3. Context-free languages
o Design pushdown automata
o Prove properties on regular languages
4. Turing-machines
o Prove properties on computable and non-computable languages

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



On studying effectively for this content ?/11

Suggestions

* Read the chapter before the class:
This way we can direct the class to specific details of a chapter,
rather than a more topical end-to-end description of the chapter.

o Attempt to write the exercises before the class:
We can guide a class to cover certain details of a difficult exercise.

» Use the office hours and our online forum: Coq is a unusual programming language, so
you will get stuck simply because you are not familiar with the IDE or a quirk of the

language

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Module 1




Basics.v: Partl

A primer on the programming language CoQ

We will learn the core principles behind Coq

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Fnumerated type ?/11

A data type where the user specifies the various distinct values that inhabit the type.

Examples?

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Fnumerated type ?/11

A data type where the user specifies the various distinct values that inhabit the type.
Examples?

e boolean

4 suits of cards
byte

int32

int64

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Declare an enumerated type ?/11

Inductive day : Type :=
| monday : day
| tuesday : day
| wednesday : day
| thursday : day
| friday : day
|
|

saturday : day
sunday : day.

Inductive defines an (enumerated) type by cases.

The type is named day and declared as a : Type (Line 1).

Enumerated types are delimited by the assignment operator (:=) and a dot (.).
Type day consists of 7 cases, each of which is is tagged with the type (day).

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Printing to the standard output ?/11

Compute prints the result of an expression (terminated with dot):

Compute monday.
prints

= tuesday
: day

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Interacting with the outside world ?/11

Programming in Coq is different most popular programming paradigms
Programming is an interactive development process

The IDE is very helpful: workflow similar to using a debugger

It's a REPL on steroids!

Compute evaluates an expression, similar to printf

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Inspecting an enumerated type ?/11

match d with
| monday = tuesday

| tuesday = wednesday
| wednesday = thursday
| thursday = friday

| friday = monday

| saturday = monday

| sunday = monday

end

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Inspecting an enumerated type ?/11

match d with
| monday = tuesday

| tuesday = wednesday
| wednesday = thursday
| thursday = friday

| friday = monday

| saturday = monday

| sunday = monday

end

e match performs pattern matching on variable d.

e Each pattern-match is called a branch; the branches are delimited by keywords with and
end.

o Each branch is prefixed by a mid-bar (|) (=), a pattern (eg, monday), an arrow (=), and a
return value

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Pattern matching example ?/11

Compute match monday with
| monday = tuesday

| tuesday = wednesday
| wednesday = thursday
| thursday = friday

| friday = monday

| saturday = monday

| sunday = monday

end.

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Create a function ?/11

Definition next_weekday (d:day) : day :=
match d with
| monday = tuesday

| tuesday = wednesday

| wednesday = thursday

| thursday = friday

| friday = monday

| saturday = monday

| sunday = monday

end.

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Create a function ?/11

Definition next_weekday (d:day) : day :=
match d with
| monday = tuesday

| tuesday = wednesday

| wednesday = thursday

| thursday = friday

| friday = monday

| saturday = monday

| sunday = monday

end.

e Definitionis used to declare a function.

 |n this case next_weekday has one parameter d of type day and returns (:) a value of type
day.

* Between the assignment operator (:=) and the dot (.), we have the body of the function.

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Fxample 2 ?/11

Compute (next_weekday friday).
yields (Message pane)

= monday
: day

next_weekday friday is the same as monday (after evaluation)

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Your first proof ?/11

Example test_next_weekday:

next_weekday (next_weekday saturday) = tuesday.
Proof.

simpl.

reflexivity.
Qed.

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



Your first proof ?/11

Example test_next_weekday:

next_weekday (next_weekday saturday) = tuesday.
Proof.

simpl.

reflexivity.
Qed.

Example prefixes the name of the proposition we want to prove.

The return type (:) is a (logical) proposition stating that two values are equal (after
evaluation).

The body of function test_next_weekday uses the 1tac proof language.
The dot (.) after the type puts us in proof mode. (Read as "defined below".)
This is essentially a unit test.

CS420 D Introduction ) Lecturel Y Tiago Cogumbreiro



