CS420

Introduction to the Theory of Computation

Lecture 21: Undecidability and unrecognizability

Tiago Cogumbreiro

2/25

Today we learn

- Decidability results
- Halting problem
- Emptiness for TM is undecidable

Section 4.2, 5.1

Decidability and Recognizability

Understanding the limits of decision problems

Implementation: algorithm that answers a decision problem, that is algorithm says YES whenever decision problem says YES.

- **Decidability:** there is an implementation that terminates for all inputs
- Undecidability: any implementation will loop for some inputs
- Unrecognizability: no implementation is possible

Decidability and Recognizability

Understanding the limits of decision problems

Implementation: algorithm that answers a decision problem, that is algorithm says YES whenever decision problem says YES.

- **Decidability:** there is an implementation that terminates for all inputs
- Undecidability: any implementation will loop for some inputs
- Unrecognizability: no implementation is possible

Technically we are learning

- Proving the correctness of algorithms
- Proving the termination of algorithms
- Proving non-trivial results (combining multiple theorems)

Corollary 4.23

 A_{TM} is unrecognizable

Corollary 4.23: \overline{A}_{TM} is unrecognizable

Lemma co_a_tm_not_recognizable: ~ Recognizable (compl A_tm).

Done in class...

Corollary 4.18

Some languages are unrecognizable

Corollary 4.18 Some languages are unrecognizable

Proof.

Corollary 4.18 Some languages are unrecognizable

Proof. An example of an unrecognizable language is: \overline{A}_{TM}

If L is decidable,

then \overline{L} is decidable

On pen-and-paper proofs

THEOREM 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

In other words, a language is decidable exactly when both it and its complement are Turing-recognizable.

PROOF We have two directions to prove. First, if A is decidable, we can easily see that both A and its complement \overline{A} are Turing-recognizable. Any decidable language is Turing-recognizable, and the complement of a decidable language also is decidable.

Proof of Theorem 4.22 Taken from the book.

First, if A is decidable, we can easily see that both A and its complement A are Turingrecognizable.

- A is decidable, then A is recognizable by definition.
- A is decidable, then \overline{A} is recognizable? Why?

Any decidable language is Turing-recognizable,

• Yes, by definition.

and the complement of a decidable language also is decidable.

• Why?

If L is decidable, then \overline{L} is decidable

1. Let M decide L.

2. Create a Turing machine that negates the result of M.

Definition inv M w :=
 mlet b ← Call m w in halt_with (negb b).

- 3. Show that inv Mrecognizes $\operatorname{Inv}(L) = \{w \mid M ext{ rejects } w\}$
- 4. Show that the result of inv M for any word w is the negation of running M with m, where negation of accept is reject, reject is accept, and loop is loop.
- 5. The goal is to show that inv M recognizes \overline{L} and is decidable.

What about loops? If M loops on some word w, then inv M would also loop. How is does inv M recognize \overline{L} ?

If L is decidable, then \overline{L} is decidable

1. Let M decide L.

2. Create a Turing machine that negates the result of M.

Definition inv M w :=
 mlet b ← Call m w in halt_with (negb b).

- 3. Show that inv Mrecognizes $\operatorname{Inv}(L) = \{w \mid M \text{ rejects } w\}$
- 4. Show that the result of inv M for any word w is the negation of running M with m, where negation of accept is reject, reject is accept, and loop is loop.
- 5. The goal is to show that inv M recognizes \overline{L} and is decidable.

What about loops? If M loops on some word w, then inv M would also loop. How is does inv M recognize \overline{L} ?

Recall that L is decidable, so M will never loop.

Continuation...

Part 1. Show that inv M recognizes \overline{L}

We must show that: If M decides L and inv M recognizes Inv(L), then inv M is decidable. It is enough to show that if M decides L, then $Inv(L) = \overline{L}$. Show proof inv_compl_equiv.

Part 2. Show that inv M is a decider

Show proof decides_to_compl.

Chapter 5: Undecidability

$HALT_{TM}$: Termination of TM

Will this TM halt given this input?

(The Halting problem)

Theorem 5.1: HALT_TM loops for some input

Set-based encoding

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Proof

Proof idea: Given Turing machine acc, show that acc decides A_{TM} .

```
on input w} def HALT_TM(M,w):
    return M halts on w
```

Function-based encoding

```
def acc(M, w):
    if HALT_TM(M,w):
        return M(w)
    else:
        return False
```


Theorem 5.1: Proof overview

```
Definition acc D p :=
  let (M, w) := decode_machine_input p in
  mlet b ← Call D p in
  if b then Call M w else REJECT.
```

Definition acc_lang D p :=
 let (M, w) := decode_machine_input p in
 run D p = Accept /\ run M w = Accept.

 $\operatorname{Acc}_D = \{ \langle M, w
angle \mid D ext{ accepts } \langle M, w
angle \wedge M ext{ accepts } w \}$

Apply Thm 4.11 to (H) "acc decides A_{TM} " and reach a contradiction. To prove H:

- 1. Show that acc recognizes Acc_D
- 2. Show that $Acc_D = A_{TM}$ (why do we need this step?)
- 3. Show that acc is decidable

Part 1. Show that acc recognizes Acc_D

- 1 **Definition** acc p :=
- 2 let (M, w) := decode_machine_input p in
- 3 mlet b ← Call D p in
- 4 if b then Call M w else REJECT.

1. Show that if acc waccepts, then $p\in \operatorname{Acc}_D$, ie, D accepts $\langle M,p
angle$ and M accepts w.

- 1 **Definition** acc p :=
- 2 let (M, w) := decode_machine_input p in
- 3 mlet b ← Call D p in
- 4 if b then Call M w else REJECT.

- 1. Show that if acc waccepts, then $p\in \operatorname{Acc}_D$, ie, D accepts $\langle M,p
 angle$ and M accepts w.
 - Case analysis on Call D <M,w>

- 1 **Definition** acc p :=
- 2 let (M, w) := decode_machine_input p in
- 3 mlet b ← Call D p in
- 4 if b then Call M w else REJECT.

- 1. Show that if acc waccepts, then $p\in \operatorname{Acc}_D$, ie, D accepts $\langle M,p
 angle$ and M accepts w.
 - Case analysis on Call D <M,w>
 1. D accepts <M,w>, then we get that M accepts w

- 1 **Definition** acc p :=
- 2 let (M, w) := decode_machine_input p in
- 3 mlet b ← Call D p in
- 4 if b then Call M w else REJECT.

- 1. Show that if acc waccepts, then $p\in \operatorname{Acc}_D$, ie, D accepts $\langle M,p
 angle$ and M accepts w.
 - Case analysis on Call D <M,w>
 1. D accepts <M,w>, then we get that M accepts w
 - 2. D rejects <M, w>, then contradiction
- 2. Show that if $w \in \operatorname{Acc}_D$, then acc waccepts.

- 1 **Definition** acc p :=
- 2 let (M, w) := decode_machine_input p in
- 3 mlet b ← Call D p in
- 4 if b then Call M w else REJECT.

- 1. Show that if acc waccepts, then $p\in \operatorname{Acc}_D$, ie, D accepts $\langle M,p
 angle$ and M accepts w.
 - Case analysis on Call D <M,w>
 1. D accepts <M,w>, then we get that M accepts w
 - 2. D rejects <M, w>, then contradiction
- 2. Show that if $w \in \operatorname{Acc}_D$, then acc waccepts.
 - $\,\circ\,$ Given D accepts $\langle M,w\rangle$ and M accepts w, show that acc $\,{\tt w}\,$ accepts

- 1 **Definition** acc p :=
- 2 let (M, w) := decode_machine_input p in
- 3 mlet b ← Call D p in
- 4 if b then Call M w else REJECT.

- 1. Show that if acc waccepts, then $p\in \operatorname{Acc}_D$, ie, D accepts $\langle M,p
 angle$ and M accepts w.
 - Case analysis on Call D <M,w>
 1. D accepts <M,w>, then we get that M accepts w
 - 2. D rejects <M, w>, then contradiction
- 2. Show that if $w \in \operatorname{Acc}_D$, then acc waccepts.
 - $\,\circ\,$ Given D accepts $\langle M,w\rangle$ and M accepts w, show that acc $\,{\tt w}\,$ accepts
 - Rewrite each in code, get accept

Part 2. Show that $\operatorname{Acc}_D = A_{TM}$

1. Show that if $\langle M,w
angle\in\operatorname{Acc}_D$, then $\langle M,p
angle\in A_{TM}$

Part 2. Show that $\operatorname{Acc}_D = A_{TM}$

- 1. Show that if $\langle M,w
 angle\in\operatorname{Acc}_D$, then $\langle M,p
 angle\in A_{TM}$
 - $\circ~$ We have M accepts w from $\langle M,p
 angle\in \operatorname{Acc}_D$

Part 2. Show that $\operatorname{Acc}_D = A_{TM}$

- 1. Show that if $\langle M,w
 angle\in\operatorname{Acc}_D$, then $\langle M,p
 angle\in A_{TM}$
 - $\circ~$ We have M accepts w from $\langle M,p
 angle\in \operatorname{Acc}_D$
- 2. Show that if (i) $\langle M,w
 angle\in A_{TM}$, then $\langle M,w
 angle\in \operatorname{Acc}_D$, ie

Part 2. Show that $\mathrm{Acc}_D = A_{TM}$

- 1. Show that if $\langle M,w
 angle\in\operatorname{Acc}_D$, then $\langle M,p
 angle\in A_{TM}$
 - $\circ~$ We have M accepts w from $\langle M,p
 angle\in \operatorname{Acc}_D$
- 2. Show that if (i) $\langle M,w
 angle\in A_{TM}$, then $\langle M,w
 angle\in {
 m Acc}_D$, ie M accepts w and D accepts $\langle M,w
 angle$

Part 2. Show that $\mathrm{Acc}_D = A_{TM}$

- 1. Show that if $\langle M,w
 angle\in\operatorname{Acc}_D$, then $\langle M,p
 angle\in A_{TM}$
 - $\circ~$ We have M accepts w from $\langle M,p
 angle\in \operatorname{Acc}_D$
- 2. Show that if (i) $\langle M,w
 angle\in A_{TM}$, then $\langle M,w
 angle\in {
 m Acc}_D$, ie M accepts w and D accepts $\langle M,w
 angle$
 - $\circ~$ We have that M accepts w from (i)

Part 2. Show that $\mathrm{Acc}_D = A_{TM}$

- 1. Show that if $\langle M,w
 angle\in\operatorname{Acc}_D$, then $\langle M,p
 angle\in A_{TM}$
 - $\circ~$ We have M accepts w from $\langle M,p
 angle\in\operatorname{Acc}_D$
- 2. Show that if (i) $\langle M,w
 angle\in A_{TM}$, then $\langle M,w
 angle\in {
 m Acc}_D$, ie M accepts w and D accepts $\langle M,w
 angle$
 - $\circ~$ We have that M accepts w from (i)
 - $\,\circ\,$ We have that D accepts $\langle M,w
 angle$ since M halts.

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with $p=\langle M,w
angle$ and reach a contradiction.

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with $p = \langle M, w \rangle$ and reach a contradiction. If acc loops with p, then D accepts p and M loops with w, or D loops with p^{\dagger}

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with $p=\langle M,w
angle$ and reach a contradiction. If acc loops with p, then D accepts p and M loops with w, or D loops with $p^{\,\dagger}$

- If D accepts p, then M halts with w, which contradicts with M loops with w

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with $p=\langle M,w
angle$ and reach a contradiction. If acc loops with p, then D accepts p and M loops with w, or D loops with $p^{\,\dagger}$

- If D accepts p, then M halts with w, which contradicts with M loops with w
- If D loops with p, we reach a contradiction because D is a decider

[†]: Why?

ETM: Emptiness of TM (Is the language of this TM empty?)

Set-based

$$E_{\mathsf{TM}} = \{ \langle M
angle \mid M ext{ is a TM and } L(M) = \emptyset \}$$

def E_TM(M):

return $L(M) = \{\}$

Function-based

Proof overview: show that acc decides A_{TM}

```
def build_M1(M,w):
    def M1(x):
        if x == w:
            return M accepts w
        else:
            return False
        return M1
```

```
def acc(M, w):
    b = E_TM(build_M1(M, w))
    return not b
```

 $ullet w\in L(extsf{M1})\iff \langle extsf{M1}
angle
otin E_{TM}
otin w\in L(extsf{M1})\iff w\in L(M)$

Proof follows by contradiction.

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.

Proof follows by contradiction.

- 1. Show that E_{TM} decidable implies A_{TM} decidable.
- 2. Reach contradiction by applying Thm 4.11 to (1)

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.

2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.

2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM} .

1. Show that acc recognizes A_{TM}

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.

2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM} .

1. Show that acc recognizes A_{TM} 1. Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{\langle M, w \rangle \mid L(\mathtt{M1}_{M,w}) \neq \emptyset\}$ (e_tm_a_tm_spec)

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.

2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM} .

- 1. Show that acc recognizes A_{TM}
 - 1. Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{\langle M, w \rangle \mid L(\mathtt{M1}_{M,w}) \neq \emptyset\}$ (e_tm_a_tm_spec)
 - 2. Show that acc recognizes Acc_D (E_tm_A_tm_recognizes)

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.

2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM} .

- 1. Show that acc recognizes A_{TM}
 - 1. Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{\langle M, w \rangle \mid L(\mathtt{M1}_{M,w}) \neq \emptyset\}$ (e_tm_a_tm_spec)
 - 2. Show that acc recognizes Acc_D (E_tm_A_tm_recognizes)

2. Show that acc is a decider (decider_E_tm_A_tm)

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w \rangle \mid L(\mathtt{M1}_{M,w}) \neq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w \rangle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.

 $\circ~$ Case analysis on running M with input w:

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w \rangle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(\mathtt{M1}_{M,w}) \neq \emptyset$, then M accepts w.

- $\circ~$ Case analysis on running M with input w:
 - Case (a) M accepts w: use assumption to conclude

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(\mathtt{M1}_{M,w})
eq \emptyset$, then M accepts w.

- $\circ~$ Case analysis on running M with input w:
 - Case (a) M accepts w: use assumption to conclude
 - Case (b) M rejects w: we can conclude that $L(\mathtt{M1}_{M,w}) = \emptyset$ from (b)

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w
angle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(\mathtt{M1}_{M,w})
eq \emptyset$, then M accepts w.

- $\circ~$ Case analysis on running M with input w:
 - Case (a) M accepts w: use assumption to conclude
 - Case (b) M rejects w: we can conclude that $L(\mathtt{M1}_{M,w}) = \emptyset$ from (b)
 - Case (c) M loops with w: same as above

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w \rangle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(\mathtt{M1}_{M,w}) \neq \emptyset$.

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w \rangle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M1_{M,w}) \neq \emptyset$. 1. Proof follows by contradiction: assume $L(M1_{M,w}) = \emptyset$.

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w \rangle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M1_{M,w}) \neq \emptyset$. 1. Proof follows by contradiction: assume $L(M1_{M,w}) = \emptyset$.

2. We know that $\mathtt{M1}_{M,w}$ does not accept w from (2.1)

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w \rangle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M1_{M,w}) \neq \emptyset$. 1. Proof follows by contradiction: assume $L(M1_{M,w}) = \emptyset$.

2. We know that $\mathtt{M1}_{M,w}$ does not accept w from (2.1)

3. To contradict 2.2, we show that $\mathtt{M1}_{M,w}$ accepts w

Part 1.1: Show that $A_{\mathsf{TM}} = \operatorname{Acc}_D$ where $\operatorname{Acc}_D = \{ \langle M, w \rangle \mid L(\mathtt{M1}_{M,w})
eq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(extsf{M1}_{M,w})
eq \emptyset.$

1. Proof follows by contradiction: assume $L(\mathtt{M1}_{M,w}) = \emptyset$.

2. We know that $\mathtt{M1}_{M,w}$ does not accept w from (2.1)

3. To contradict 2.2, we show that $\mathtt{M1}_{M,w}$ accepts w

1. Since x = w and (2.1), then $\mathtt{M1}_{M,w}$ accepts w

