Today we learn

- Decidability results
- Halting problem
- Emptiness for TM is undecidable

Section 4.2, 5.1
Decidability and Recognizability

Understanding the limits of decision problems

Implementation: algorithm that answers a decision problem, that is algorithm says YES whenever decision problem says YES.

- **Decidability:** there is an implementation that terminates for all inputs
- **Undecidability:** any implementation will loop for some inputs
- **Unrecognizability:** no implementation is possible
Decidability and Recognizability

Understanding the limits of decision problems

Implementation: algorithm that answers a decision problem, that is algorithm says YES whenever decision problem says YES.

- **Decidability:** there is an implementation that terminates for all inputs
- **Undecidability:** any implementation will loop for some inputs
- **Unrecognizability:** no implementation is possible

Technically we are learning

- Proving the correctness of algorithms
- Proving the termination of algorithms
- Proving non-trivial results (combining multiple theorems)
Corollary 4.23

$\overline{A_{TM}}$ is unrecognizable
Corollary 4.23: $\overline{A_{TM}}$ is unrecognizable

Lemma co_a_tm_not_recognizable:

\sim Recognizable ($\text{compl } A_{tm}$).

Done in class...
Corollary 4.18
Some languages are unrecognizable
Corollary 4.18 Some languages are unrecognizable

Proof.
Corollary 4.18 Some languages are unrecognizable

Proof. An example of an unrecognizable language is: $\overline{A_{TM}}$
If L is decidable, then \overline{L} is decidable
On pen-and-paper proofs

Theorem 4.22

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

In other words, a language is decidable exactly when both it and its complement are Turing-recognizable.

Proof We have two directions to prove. First, if A is decidable, we can easily see that both A and its complement \overline{A} are Turing-recognizable. Any decidable language is Turing-recognizable, and the complement of a decidable language also is decidable.
Proof of Theorem 4.22 Taken from the book.

First, if A is decidable, we can easily see that both A and its complement \overline{A} are Turing-recognizable.

- A is decidable, then A is recognizable by definition.
- A is decidable, then \overline{A} is recognizable? Why?

Any decidable language is Turing-recognizable,

- Yes, by definition.

and the complement of a decidable language also is decidable.

- Why?
If L is decidable, then \overline{L} is decidable

1. Let M decide L.
2. Create a Turing machine that negates the result of M.

```
Definition inv M w :=
  mlet b ← Call m w in halt_with (negb b).
```

3. Show that $\text{inv } M$ recognizes
 \[
 \text{Inv}(L) = \{ w \mid M \text{ rejects } w \}
 \]
4. Show that the result of $\text{inv } M$ for any word w is the
 negation of running M with m, where negation of
 accept is reject, reject is accept, and loop is loop.
5. The goal is to show that $\text{inv } M$ recognizes \overline{L} and is
 decidable.

What about loops? If M
loops on some word w, then $\text{inv } M$ would also loop. How is does $\text{inv } M$ recognize \overline{L}?
If L is decidable, then \overline{L} is decidable

1. Let M decide L.
2. Create a Turing machine that negates the result of M.

Definition $\text{inv } M \ w :=$
\begin{verbatim}
mlet b = Call m w in halt_with (negb b).
\end{verbatim}

3. Show that $\text{inv } M$ recognizes
\[\text{Inv}(L) = \{w \mid M \text{ rejects } w \} \]

4. Show that the result of $\text{inv } M$ for any word w is the negation of running M with m, where negation of accept is reject, reject is accept, and loop is loop.

5. The goal is to show that $\text{inv } M$ recognizes \overline{L} and is decidable.

What about loops? If M loops on some word w, then $\text{inv } M$ would also loop. How is does $\text{inv } M$ recognize \overline{L}?

Recall that L is decidable, so M will never loop.
If L is decidable, then \overline{L} is decidable

Continuation...

Part 1. Show that $\text{inv } \text{M}$ recognizes \overline{L}

We must show that: If M decides L and $\text{inv } \text{M}$ recognizes $\text{Inv}(L)$, then $\text{inv } \text{M}$ is decidable.

It is enough to show that if M decides L, then $\text{Inv}(L) = \overline{L}$.

Show proof inv_compl_equiv.

Part 2. Show that $\text{inv } \text{M}$ is a decider

Show proof decides_to_compl.
Chapter 5: Undecidability
\textit{HALT}_TM: Termination of TM

Will this TM halt given this input?

(The Halting problem)
HALT\textsubscript{TM} is undecidable

Theorem 5.1: HALT_TM loops for some input

Set-based encoding

\[
HALT\textsubscript{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w\}
\]

Function-based encoding

```python
def HALT_TM(M, w):
    return M halts on w
```

Proof

Proof idea: Given Turing machine acc, show that acc decides \(A_{TM} \).

```python
def acc(M, w):
    if HALT_TM(M, w):
        return M(w)
    else:
        return False
```
Theorem 5.1: Proof overview

Apply Thm 4.11 to (H) "acc decides A_{TM}" and reach a contradiction. To prove H:

1. Show that acc recognizes Acc_D
2. Show that $\text{Acc}_D = A_{TM}$ (why do we need this step?)
3. Show that acc is decidable
HALT_{TM} is undecidable

Part 1. Show that acc recognizes Acc_D

1. Show that if acc w accepts, then $p \in \text{Acc}_D$, ie, D accepts $\langle M, p \rangle$ and M accepts w.

\begin{verbatim}
1 Definition acc p :=
2 let (M, w) := decode_machine_input p in
3 mlet b <- Call D p in
4 if b then Call M w else REJECT.
\end{verbatim}
HALT_{TM} is undecidable

Part 1. Show that acc recognizes Acc_D

1. Show that if acc w accepts, then p ∈ Acc_D, ie, D accepts ⟨M, p⟩ and M accepts w.
 - Case analysis on Call D <M, w>
HALT\textsubscript{TM} is undecidable

Part 1. Show that acc recognizes \textbf{Acc}_D

1. Show that if acc w accepts, then $p \in \textbf{Acc}_D$, ie, D accepts $\langle M, p \rangle$ and M accepts w.
 1. Case analysis on Call $D \langle M, w \rangle$
 1. D accepts $\langle M, w \rangle$, then we get that M accepts w
HALT_T_M is undecidable

Part 1. Show that acc recognizes Acc_D

1. Show that if acc w accepts, then p ∈ Acc_D, ie, D accepts ⟨M,p⟩ and M accepts w.
 ○ Case analysis on Call D <M,w>
 1. D accepts <M,w>, then we get that M accepts w
 2. D rejects <M,w>, then contradiction

2. Show that if w ∈ Acc_D, then acc w accepts.
HALT$_{TM}$ is undecidable

Part 1. Show that acc recognizes Acc_D

1. Show that if acc w accepts, then $p \in \text{Acc}_D$, ie, D accepts $\langle M, p \rangle$ and M accepts w.
 - Case analysis on Call $D <M,w>$
 1. D accepts $<M,w>$, then we get that M accepts w
 2. D rejects $<M,w>$, then contradiction

2. Show that if $w \in \text{Acc}_D$, then acc w accepts.
 - Given D accepts $\langle M, w \rangle$ and M accepts w, show that acc w accepts
HALT\textsubscript{TM} is undecidable

Part 1. Show that acc recognizes \(\text{Acc}_D \)

1. Show that if acc \(w \) accepts, then \(p \in \text{Acc}_D \), i.e., \(D \) accepts \(\langle M, p \rangle \) and \(M \) accepts \(w \).
 - Case analysis on \(\text{Call } D \langle M, w \rangle \)
 1. \(D \) accepts \(\langle M, w \rangle \), then we get that \(M \) accepts \(w \)
 2. \(D \) rejects \(\langle M, w \rangle \), then contradiction

2. Show that if \(w \in \text{Acc}_D \), then acc \(w \) accepts.
 - Given \(D \) accepts \(\langle M, w \rangle \) and \(M \) accepts \(w \), show that acc \(w \) accepts
 - Rewrite each in code, get accept
HALT_{TM} is undecidable

Part 2. Show that $\text{Acc}_D = \text{AT}_{TM}$

1. Show that if $\langle M, w \rangle \in \text{Acc}_D$, then $\langle M, p \rangle \in \text{AT}_{TM}$
HALT\textsubscript{TM} is undecidable

Part 2. Show that $\mathsf{Acc}_D = \mathsf{A}_{TM}$

1. Show that if $\langle M, w \rangle \in \mathsf{Acc}_D$, then $\langle M, p \rangle \in \mathsf{A}_{TM}$
 - We have M accepts w from $\langle M, p \rangle \in \mathsf{Acc}_D$
HALT_{TM} is undecidable

Part 2. Show that $\text{Acc}_D = A_{\text{TM}}$

1. Show that if $\langle M, w \rangle \in \text{Acc}_D$, then $\langle M, p \rangle \in A_{\text{TM}}$
 - We have M accepts w from $\langle M, p \rangle \in \text{Acc}_D$

2. Show that if (i) $\langle M, w \rangle \in A_{\text{TM}}$, then $\langle M, w \rangle \in \text{Acc}_D$, i.e.
HALT_{TM} is undecidable

Part 2. Show that $\text{Acc}_D = A_{TM}$

1. Show that if $\langle M, w \rangle \in \text{Acc}_D$, then $\langle M, p \rangle \in A_{TM}$
 - We have M accepts w from $\langle M, p \rangle \in \text{Acc}_D$

2. Show that if (i) $\langle M, w \rangle \in A_{TM}$, then $\langle M, w \rangle \in \text{Acc}_D$, ie M accepts w and D accepts $\langle M, w \rangle$
\textit{HALT}_{TM} is undecidable

Part 2. Show that $\text{Acc}_D = A_{TM}$

1. Show that if $\langle M, w \rangle \in \text{Acc}_D$, then $\langle M, p \rangle \in A_{TM}$
 - We have M accepts w from $\langle M, p \rangle \in \text{Acc}_D$

2. Show that if (i) $\langle M, w \rangle \in A_{TM}$, then $\langle M, w \rangle \in \text{Acc}_D$, ie M accepts w and D accepts $\langle M, w \rangle$
 - We have that M accepts w from (i)
HALT_{TM} is undecidable

Part 2. Show that $\text{Acc}_D = A_{TM}$

1. Show that if $\langle M, w \rangle \in \text{Acc}_D$, then $\langle M, p \rangle \in A_{TM}$
 - We have M accepts w from $\langle M, p \rangle \in \text{Acc}_D$

2. Show that if (i) $\langle M, w \rangle \in A_{TM}$, then $\langle M, w \rangle \in \text{Acc}_D$, ie M accepts w and D accepts $\langle M, w \rangle$
 - We have that M accepts w from (i)
 - We have that D accepts $\langle M, w \rangle$ since M halts.
HALT_{TM} is undecidable

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with \(p = \langle M, w \rangle \) and reach a contradiction.
HALT_{TM} is undecidable

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with $p = \langle M, w \rangle$ and reach a contradiction. If acc loops with p, then D accepts p and M loops with w, or D loops with p †
\(\text{HALT}_{TM} \) is undecidable

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with \(p = \langle M, w \rangle \) and reach a contradiction.

If acc loops with \(p \), then \(D \) accepts \(p \) and \(M \) loops with \(w \), or \(D \) loops with \(p \)

- If \(D \) accepts \(p \), then \(M \) halts with \(w \), which contradicts with \(M \) loops with \(w \)
HALT_{TM} is undecidable

Part 3. Show that acc is decidable

Proof by contradiction. Assume acc loops with $p = \langle M, w \rangle$ and reach a contradiction. If acc loops with p, then D accepts p and M loops with w, or D loops with p †

- If D accepts p, then M halts with w, which contradicts with M loops with w
- If D loops with p, we reach a contradiction because D is a decider

†: Why?
E_{TM}: Emptiness of TM

(Is the language of this TM empty?)
Theorem 5.2: E_{TM} is undecidable

Set-based

$E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$

Function-based

\[
\text{def } E_{TM}(M):
\]
\[
\quad \text{return } L(M) = \{\}
\]

Proof overview: show that acc decides A_{TM}

\[
\text{def } build_{M1}(M, w):
\]
\[
\quad \text{def } M1(x):
\]
\[
\quad \quad \text{if } x = w:
\]
\[
\quad \quad \quad \text{return } M \text{ accepts } w
\]
\[
\quad \quad \text{else:}
\]
\[
\quad \quad \quad \text{return False}
\]
\[
\quad \text{return } M1
\]

\[
\text{def } acc(M, w):
\]
\[
\quad b = E_{TM}(build_{M1}(M, w))
\]
\[
\quad \text{return } \neg b
\]

- $w \in L(M1) \iff \langle M1 \rangle \notin E_{TM}$
- $w \in L(M1) \iff w \in L(M)$
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.
Theorem 5.2: \(E_{TM} \) is undecidable

Proof follows by contradiction.

1. Show that \(E_{TM} \) decidable implies \(A_{TM} \) decidable.
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM}.

1. Show that acc recognizes A_{TM}
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM}.

1. Show that acc recognizes A_{TM}
 1. Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M1_{M,w}) \neq \emptyset \}$
 (e_tm_a_tm_spec)
Theorem 5.2: E_{TM} is undecidable

Proof follows by contradiction.

1. Show that E_{TM} decidable implies A_{TM} decidable.
2. Reach contradiction by applying Thm 4.11 to (1)

Goal: E_{TM} decidable implies A_{TM} decidable

Let D decide E_{TM}.

1. Show that acc recognizes A_{TM}
 1. Show that $A_{TM} = \text{Acc}_D$ where $\text{Acc}_D = \{ \langle M, w \rangle \mid L(M_{1M,w}) \neq \emptyset \}$
 (e_tm_a_tm_spec)
 2. Show that acc recognizes Acc_D (E_tm_A_tm_recognizes)
Theorem 5.2: \(E_{TM} \) is undecidable

Proof follows by contradiction.

1. Show that \(E_{TM} \) decidable implies \(A_{TM} \) decidable.
2. Reach contradiction by applying Thm 4.11 to (1)

Goal: \(E_{TM} \) decidable implies \(A_{TM} \) decidable

Let \(D \) decide \(E_{TM} \).

1. Show that acc recognizes \(A_{TM} \)
 1. Show that \(A_{TM} = Acc_D \) where \(Acc_D = \{ \langle M, w \rangle \mid L(M_1, w) \neq \emptyset \} \) (e_tm_a_tm_spec)
 2. Show that acc recognizes \(Acc_D \) (E_tm_A_tm_recognizes)
2. Show that acc is a decider (decider_E_tm_A_tm)
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = \text{Acc}_D$ where $\text{Acc}_D = \{ \langle M, w \rangle \mid L(M_{1,M,w}) \neq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(M_{1,M,w}) \neq \emptyset$, then M accepts w.

Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M1, w) \neq \emptyset \}$

Theorem not_empty_toAccept

1. Show that: If $L(M1, w) \neq \emptyset$, then M accepts w.
 - Case analysis on running M with input w:

Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M1_{M,w}) \neq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(M1_{M,w}) \neq \emptyset$, then M accepts w.
 - Case analysis on running M with input w:
 - Case (a) M accepts w: use assumption to conclude
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_{D}$ where $Acc_{D} = \{\langle M, w \rangle \mid L(M_{1}, w) \neq \emptyset \}$

Theorem not_empty_to_accept

1. Show that: If $L(M_{1}, w) \neq \emptyset$, then M accepts w.
 - Case analysis on running M with input w:
 - Case (a) M accepts w: use assumption to conclude
 - Case (b) M rejects w: we can conclude that $L(M_{1}, w) = \emptyset$ from (b)
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = \text{Acc}_D$ where $\text{Acc}_D = \{\langle M, w \rangle \mid L(M_1, w) \neq \emptyset\}$

Theorem not_empty_to_accept

1. Show that: If $L(M_1, w) \neq \emptyset$, then M accepts w.
 - Case analysis on running M with input w:
 - Case (a) M accepts w: use assumption to conclude
 - Case (b) M rejects w: we can conclude that $L(M_1, w) = \emptyset$ from (b)
 - Case (c) M loops with w: same as above
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M_1, w) \neq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M_1, w) \neq \emptyset$.
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M_1, w) \neq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M_1, w) \neq \emptyset$.
 1. Proof follows by contradiction: assume $L(M_1, w) = \emptyset$.

Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M1_M, w) \neq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M1_M, w) \neq \emptyset$.
 1. Proof follows by contradiction: assume $L(M1_M, w) = \emptyset$.
 2. We know that $M1_M, w$ does not accept w from (2.1)
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = Acc_D$ where $Acc_D = \{ \langle M, w \rangle \mid L(M, w) \neq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M, w) \neq \emptyset$.
 1. Proof follows by contradiction: assume $L(M, w) = \emptyset$.
 2. We know that $M_{1M,w}$ does not accept w from (2.1)
 3. To contradict 2.2, we show that $M_{1M,w}$ accepts w
Theorem 5.2: E_{TM} is undecidable

Part 1.1: Show that $A_{TM} = \text{Acc}_D$ where $\text{Acc}_D = \{\langle M, w \rangle \mid L(M_{1\ M}, w) \neq \emptyset \}$

Theorem accept_to_not_empty

2. Show that: If M accepts w, then $L(M_{1\ M}, w) \neq \emptyset$.
 1. Proof follows by contradiction: assume $L(M_{1\ M}, w) = \emptyset$.
 2. We know that $M_{1\ M}, w$ does not accept w from (2.1)
 3. To contradict 2.2, we show that $M_{1\ M}, w$ accepts w
 1. Since $x = w$ and (2.1), then $M_{1\ M}, w$ accepts w