Today we will learn...

Decidability of
- The Halting Problem
- Emptiness for TM
- Regularity
- Equality

Section 5.1
Decidable languages:

- \(A_{DFA}, A_{REX}, A_{NFA}, A_{CFG} \)

\[
A_{DFA} = \{ \langle D, w \rangle \mid D \text{ accepts } w \}
\]

- \(E_{DFA}, E_{CFG} \)

\[
E_{DFA} = \{ \langle D \rangle \mid L(D) = \emptyset \}
\]

- \(EQ_{DFA} \)

\[
EQ_{DFA} = \{ \langle N_1, N_2 \rangle \mid L(N_1) = L(N_2) \}
\]
Exercise 1

Prove or falsify the following statement: EQ_{REX} is undecidable.
Exercise 1

Prove or falsify the following statement: EQ_{REX} is undecidable.

Proof. False. EQ_{REX} is decidable, as given by the following pseudo code, where EQ_{DFA} is the decider of EQ_{DFA} and $REX_{TO_{DFA}}$ is the conversion from a regular expression into a DFA.

```python
def EQ_REX(R1, R2):
    return EQ_DFA(REX_TO_DFA(R1), REX_TO_DFA(R2))
```
Exercise 2

Let D be the DFA below

![DFA Diagram]

- Exercise 2.1: Is $\langle D, 0100 \rangle \in A_{DFA}$?
- Exercise 2.2: Is $\langle D, 101 \rangle \in A_{DFA}$?
- Exercise 2.3: Is $\langle D \rangle \in A_{DFA}$?
- Exercise 2.4: Is $\langle D, 101 \rangle \in A_{REX}$?
- Exercise 2.5: Is $\langle D \rangle \in E_{DFA}$?
- Exercise 2.6: Is $\langle D, D \rangle \in EQ_{DFA}$?
- Exercise 2.7: Is $101 \in A_{REX}$?

```python
def A_DFA(D, w):
    return D.accept(w)
def E_DFA(D):
    return L(D) == {}  
def EQ_DFA(D1, D2):
    return L(D1) == L(D2)
```
Exercise 3

Recall that DFAs are closed under \cap. Prove the following statement.

If A is regular, then X_A decidable.

$$X_A = \{ \langle D \rangle \mid D \text{ is a DFA} \land L(D) \cap A \neq \emptyset \}$$
Exercise 3

Recall that DFAs are closed under \cap. Prove the following statement.

If A is regular, then X_A decidable.

$$X_A = \{ \langle D \rangle \mid D \text{ is a DFA } \land L(D) \cap A \neq \emptyset \}$$

Proof. If A is regular, then let C be the DFA that recognizes A. Let intersect be the implementation of \cap and E_DFA the decider of E_{DFA}. The following is the decider of X_A.

```
def X_A(D):
    return not E_DFA(intersect(C, D))
```
Theorem 4.22

L decidable iff L recognizable and L co-recognizable
Theorem 4.22

L decidable iff L recognizable and L co-recognizable

Proof. We can divide the above theorem in the following three results.

1. If L decidable, then L is recognizable. (**Proved.**)
2. If L decidable, then L is co-recognizable. (**Proved.**)
3. If L recognizable and L co-recognizable, then L decidable.
Part 3. If L recognizable and \overline{L} recognizable, then L decidable.

We need to extend our mini-language of TMs

```plaintext
plet b ← P1 \ P2 in P3
Runs P1 and P2 in parallel.
  • If P1 and P2 loop, the whole computation loops
  • If P1 halts and P2 halts, pass the success of both to P3
  • If P1 halts and P2 loops, pass the success of P1 to P3
  • If P1 loops and P2 halts, pass the success of P2 to P3
```

```
Inductive par_result :=
| pleft: bool → par_result
| pright: bool → par_result
| pboth: bool → bool → par_result.
```
Part 3. If \(L \) recognizable and \(\overline{L} \) recognizable, then \(L \) decidable.

Proof.

1. Let \(M_1 \) recognize \(L \) from assumption \(L \) recognizable
2. Let \(M_2 \) recognize \(\overline{L} \) from assumption \(\overline{L} \) recognizable
3. Build the following machine

\[
\begin{align*}
\text{Definition} \quad & \text{par_run} \ M_1 \ M_2 \ w := \\
& \begin{array}{l}
\text{plet} \ b \leftarrow \text{Call} \ M_1 \ w \parallel \text{Call} \ M_2 \ w \ \text{in} \\
\text{match} \ b \ \text{with} \\
| \ \text{pleft} \ \text{true} & \Rightarrow \text{ACCEPT} \\
| \ \text{pboth} \ \text{true} & \Rightarrow \text{ACCEPT} \\
| \ _ & \Rightarrow \text{REJECT}
\end{array} \\
\text{end.}
\end{align*}
\]

(* \(M_1 \) and \(M_2 \) are parameters of the machine *)

(* Call \(M_1 \) with \(w \) and \(M_2 \) with \(w \) in parallel *)

(* If \(M_1 \) accepts \(w \), accept *)

(* Otherwise, reject *)

4. Show that \(\text{par_run} \ M_1 \ M_2 \) recognizes \(L \) and is a decider.
Part 3. If L recognizable and \overline{L} recognizable, then L decidable.

Point 4: Show that $\text{par_run} \ M1 \ M2$ recognizes L and is a decider.

- 1. Show that $\text{par_run} \ M1 \ M2$ recognizes L: $\text{par_run} \ M1 \ M2$ accepts w iff $L(w)$
- 1.1. $\text{par_run} \ M1 \ M2$ accepts w, then $w \in L$
- 1.2. $w \in L$, then $\text{par_run} \ M1 \ M2$ accepts w case analysis on run $M2$ with w

Definition $\text{par_run} \ M1 \ M2 \ w :=$

\[
\text{plet } b \leftarrow \text{Call } M1 \ w \ \text{\textbackslash\textbackslash } \text{Call } M2 \ w \text{ in}
\text{match } b \text{ with}
| \text{pleft } \text{true} \Rightarrow \text{ACCEPT}
| \text{pboth } \text{true } _ \Rightarrow \text{ACCEPT}
| _ \Rightarrow \text{REJECT}
\text{end}.
\]

- $M1$ recognizes L
- $M2$ recognizes \overline{L}
- Lemma par_mach_lang
Part 3. If L recognizable and \overline{L} recognizable, then L decidable.

Point 4: Show that par_run \ M1 \ M2 recognizes L and is a decider.

1. Show that par_run \ M1 \ M2 recognizes L: par_run \ M1 \ M2 accepts w iff $L(w)$
 1. par_run \ M1 \ M2 accepts w, then $w \in L$ by case analysis on $\text{Call M1 } w \setminus \setminus \text{Call M2 } w$:
 - $\text{pleft \ true and M1 accepts } w$: holds since $M1$ recognizes L
 - both \ true and $M1$ accepts w: same as above
 - otherwise: contradiction
 2. $w \in L$, then par_run \ M1 \ M2 accepts w case analysis on run $M2$ with w
 - $M2$ accept w: par_run \ M1 \ M2 accept since $M1$ accepts with w
 - $M2$ loops w: par_run \ M1 \ M2 accept since $M1$ accepts with w
 - $M2$ reject w: par_run \ M1 \ M2 accept since $M1$ accepts with w
Part 3. If L recognizable and \overline{L} recognizable, then L decidable.

Point 4: Show that $\text{par_run } M_1 \ M_2$ recognizes L and is a decider.

2. Show that $\text{par_run } M_1 \ M_2$ decides L

(Walk through the proof of \text{recognizable_co_recognizable_to_decidable}...)