Introduction to the Theory of Computation

Lecture 19: Undecidability

Tiago Cogumbreiro
Today we will learn...

- Inductive predicates
- Turing Machine theory in Coq
- Undecidability
- Unrecognizability

Section 4.2
Inductive Predicates
Inductive predicate ≤

How to define the ≤ operator over natural numbers?
Inductive predicate \(\leq \)

How to define the \(\leq \) operator over natural numbers?

Solution

\[
\begin{align*}
\text{le-n} & : n \leq n \\
\text{le-S} & : n \leq S \, m \\
\end{align*}
\]

Example

Show that \(2 \leq 4 \)

- \(2 \leq 2 \) (with le-n)
- \(2 \leq 3 \) (with le-S)
- \(2 \leq 4 \) (with le-S)
Inductive predicate \leq

Predicates in Coq are Prop for propositions, also known as logic formula.

\[
\text{Inductive } \leq: \text{nat} \to \text{nat} \to \text{Prop} := \\
\mid \text{le}_n : \forall n, n \leq n \\
\mid \text{le}_S : \forall n \, m : \text{nat}, \\
\quad n \leq m \Rightarrow \\
\quad n \leq S \, m.
\]

Example

\[
\text{Lemma } \text{le}_n_0: \\
\quad \forall n, 0 \leq n. \\
\text{Proof.} \\
\text{Qed.}
\]
Have we seen inductive predicates before?
Have we seen inductive predicates before?

Yes!
Formalizing acceptance of an NFA (Lesson 3)

Let $M = (Q, \Sigma, \delta, q_0, F)$, let the steps through relation, notation $q \sim_M w$, be defined as:

Rule 1. State q steps through $[]$ if q is a final state.

Rule 2. If we can go from q to q' with y and q' steps through w, then q steps through $y :: w$.

Rule 3. If we can go from q to q' with ϵ and q' steps through w, then q also steps through w.

Acceptance. We say that M accepts w if, and only if, $q_0 \sim_M w$.
Turing Machine theory in Coq
Turing Machine theory in Coq

- **What?** I am implementing the Sipser book in Coq.
- **Why?**
 - So that we can dive into any proof at any level of detail.
 - So that you can inspect any proof and step through it on your own.
 - So that you can ask why and immediately have the answer.

Do you want to help out?
Why is proving important to CS?

- **Generality is important.**
 Whenever we implement a program, we are implicitly proving some notion of correctness in our minds (the program is the proof).

- **Rigour is important.**
 The importance of having precise definitions. Fight ambiguity!

- **Assume nothing and question everything.**
 In formal proofs, we are pushed to ask why? And we have a framework to understand why.

- **Models are important.**
 The basis of formal work is abstraction (or models), e.g., Turing machines as models of computers; REGEX vs DFAs vs NFAs.

What follows is a description of our Coq implementation.
Turing Machine Theory in Coq

Unspecified input/machines

For the remainder of this module we leave the input (string) and a Turing Machine unspecified.

```
Variable input: Type.
Variable machine: Type.
```
Turing Machine Theory in Coq

Unspecified input/machines

For the remainder of this module we leave the input (string) and a Turing Machine unspecified.

```
Variable input: Type.
Variable machine: Type.
```

Running a TM

We can run any Turing Machine given an input and know whether or not it accepts, rejects, or loops on a given input. We leave running a Turing Machine unspecified.

```
Inductive result := Accept | Reject | Loop.

Variable run: machine → input → result.
```
What is a language?

A language is a predicate: a formula parameterized on the input.

Definition \[\text{lang} := \text{input} \to \text{Prop} \]

Defining a set/language

Set builder notation

\[L = \{ x \mid P(x) \} \]

Functional encoding

\[L(x) \overset{\text{def}}{=} P(x) \]

Defining membership

Set membership

\[x \in L \]

Functional encoding

\[L(x) \]
Example

Set builder example

\[L = \{a^n b^n \mid n \geq 0\} \]

Functional encoding

\[L(x)^{\text{def}} = \exists n, x = a^n b^n \]
The language of a TM

Set builder notation

The language of a TM can be defined as:

\[L(M) = \{ w \mid M \text{ accepts } w \} \]

Functional encoding

\[L_M(w) \overset{\text{def}}{=} M \text{ accepts } w \]

In Coq

Definition Lang (m: machine) : lang := fun w ⇒ run m w = Accept.
Recognizes

We give a formal definition of recognizing a language. We say that M recognizes L if, and only if, M accepts w whenever $w \in L$.

Definition \[\text{Recognizes } (m:\text{machine}) (\mathcal{L}:	ext{lang}) := \forall w, \text{run } m w = \text{Accept } \iff L w. \]

Examples

- Saying M recognizes $L = \{a^n b^n \mid n \geq 0\}$ is showing that there exist a proof that shows that all inputs in language L are accepted by M and vice-versa.
- Trivially, M recognizes $L(M)$.
We will prove 4 theorems

- Theorem 4.11 A_{TM} is undecidable
- Theorem 4.22 L is decidable if, and only if, L is recognizable and co-recognizable
- Corollary 4.23 $\overline{A_{TM}}$ is unrecognizable
- Corollary 4.18 Some languages are unrecognizable

Why?

- We will learn that we cannot write a program that decides if a TM accepts a string
- We can define decidability in terms of recognizability+complement
- There are languages that cannot be recognized by some program
Theorem 4.11

A_{TM} is undecidable
Theorem 4.11

Functional view of A_{TM}

```python
def A_TM(M, w):
    return M accepts w
```

Theorem 4.11: A_{TM} is undecidable

Show that A_{TM} loops for some input.

Proof idea: Given a Turing machine

```python
def negator(w):
    # $w = \langle M \rangle$
    M = decode_machine w
    b = A_TM(M, w) # Decider D checks if M accepts $\langle M \rangle$
    return not b # Return the opposite
```

Given that A_{TM} does not terminate, what is the result of negator(negator)?
Theorem 4.11

A_{TM} is undecidable

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$$

Lemma no_decides_a_tm: $\neg \exists m, \text{Decides } m A_{tm}$.

1. Proof follows by contradiction.
2. Let D be the decider of A_{TM}
3. Consider the negator machine:

```python
def negator(w):
    # w = <M>
    M = decode_machine w
    b = call D <M, w>  # Decider D checks if M accepts <M>
    return not b       # Return the opposite
```

If we expand D and ignore decoding we get:

def negator(f):
 return not f(f)
Theorem 4.11: A_{TM} is undecidable

1. def negator(w):
2. M = decode_machine w
3. b = call D <M, w> # M accepts $<M>$?
4. return not b # Return the opposite

$A_{TM} = \{<M, w> \mid M \text{ is a TM that accepts } w\}$

4. Let negator be N. Case analysis on the result of running N with $\langle N \rangle$ reach contradiction.
5. Case N accepts $\langle N \rangle$, or negator(negator).
Theorem 4.11: A_{TM} is undecidable

4. Let negator be N. Case analysis on the result of running N with $\langle N \rangle$ reach contradiction.

5. Case N accepts $\langle N \rangle$, or negator(negator).
 1. If N accepts $\langle N \rangle$, then D rejects $\langle N, \langle N \rangle \rangle$
 2. By the definition of D (via A_{TM}), then N rejects $\langle N \rangle$. **Contradiction!**
Theorem 4.11: A_{TM} is undecidable

1. **def negator**(w):
2. M = decode_machine w
3. b = call D <M, w> # M accepts $<M>$?
4. return not b # Return the opposite

$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$

4. Let negator be N. Case analysis on the result of running N with $\langle N \rangle$ reach contradiction.
5. Case N accepts $\langle N \rangle$, or negator(negator).
 1. If N accepts $\langle N \rangle$, then D rejects $\langle N, \langle N \rangle \rangle$
 2. By the definition of D (via A_{TM}), then N rejects $\langle N \rangle$. **Contradiction!**
6. Case N rejects $\langle N \rangle$.
Theorem 4.11: A_{TM} is undecidable

1. def negator(w):
2. M = decode_machine w
3. b = call D <M, w> # M accepts $<M>$?
4. return not b # Return the opposite

$A_{TM} = \{ <M, w> | M \text{ is a TM that accepts } w \}$

4. Let negator be N. Case analysis on the result of running N with $<N>$ reach contradiction.
5. Case N accepts $<N>$, or negator(negator).
 1. If N accepts $<N>$, then D rejects $<N, <N>>$
 2. By the definition of D (via A_{TM}), then N rejects $<N>$. **Contradiction!**
 1. If N rejects $<N>$, then D accepts $<N, <N>>$
 2. Thus, by definition of D (via A_{TM}), then N accepts $<N>$. **Contradiction!**
Theorem 4.11: A_{TM} is undecidable

1. `def negator(w):`
2. `M = decode_machine w`
3. `b = call D <M, w> # M accepts <M>?`
4. `return not b # Return the opposite`

$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$

7. Case N loops $\langle N \rangle$.
Theorem 4.11: A_{TM} is undecidable

1. def negator(w):
2. M = decode_machine w
3. b = call D <M, w> # M accepts <M>?
4. return not b # Return the opposite

$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}$

7. Case N loops $\langle N \rangle$.
 1. If N loops $\langle N \rangle$, then D accepts $\langle N, \langle N \rangle \rangle$
 2. Thus, by definition of D (via A_{TM}), then N accepts $\langle N \rangle$. **Contradiction!**
Understanding the Coq formalism

Pseudo-code as a mini-language

1. Call M w
 Use the Universal Turing machine to call a machine M with input w,
 Returns whatever M returns by processing w

2. $\text{mlet } x \leftarrow P1 \text{ in } P2$
 Runs pseudo-program $P1$; if $P1$ halts, passes a boolean with the result of acceptance to $P2$. If $P1$ loops, then the whole pseudo-program loops.

3. $\text{Ret } r$
 A Turing Machine that returns whatever is in r.
 Abbreviations: $\text{Ret } \text{Accept} = \text{ACCEPT}$, $\text{Ret } \text{Reject} = \text{REJECT}$, and $\text{Ret } \text{Loop} = \text{LOOP}$.

 This language is enough to prove the results in Section 4.2.
The negator

In Python

```python
def negator(w):
    M = decode_machine w
    b = call D <M, w> # M accepts <M>?
    return not b       # Return the opposite
```

In Coq

```coq
Definition negator D w :=
    let M := decode_machine w in
    mlet b <- Call D v M, w> in
    halt_with (negb b).
```

- D is a parameter of a Turing machine, given \(\langle M, w \rangle\) decides if \(M\) accepts \(w\)
- \(w\) is a serialized Turing machine \(\langle M \rangle\)
- \(\langle M, w \rangle\) is the serialized pair \(M\) and \(w\)
- \(b\) takes the result of calling \(D\) with \(\langle M, w \rangle\)
- halt the machine with negation of \(b\)
Theorem 4.22

L decidable iff L is recognizable + co-recognizable
Theorem 4.22

L decidable iff L recognizable and L co-recognizable

Recall that L co-recognizable is \bar{L}.

Complement

$\bar{L} = \{ w \mid w \notin L \}$

Or, $\bar{L} = \Sigma^* - L$
Theorem 4.22

L decidable iff L recognizable and L co-recognizable

Proof. We can divide the above theorem in the following three results.

1. If L decidable, then L is recognizable.
2. If L decidable, then L is co-recognizable.
3. If L recognizable and L co-recognizable, then L decidable.
Part 1. If L decidable, then L is recognizable.

Proof.
Part 1. If L is decidable, then L is recognizable.

Proof.
Unpacking the definition that L is decidable, we get that L is recognizable by some Turing machine M and M is a decider. Thus, we apply the assumption that L is recognizable.
Part 2: If L decidable, then L is co-recognizable.

Proof.
Part 2: If L decidable, then L is co-recognizable.

Proof.

1. We must show that if L is decidable, then \overline{L} is decidable. \dagger
2. Since \overline{L} is decidable, then \overline{L} is recognizable.

\dagger: Why? We prove in the next lesson.