CS420

Introduction to the Theory of Computation

Lecture 16: More on tactics

Tiago Cogumbreiro

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Today we will... 7

e Rewriting terms: using equality assumption
e Case analysis: inspecting values
e Proofs by induction: generalizing case analysis

| ChaptersBasics.vand Induction.v

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Today we will... 7

e Recap Induction.vandLists.v

e Learnto apply lemmas (and not just rewrite)

e Learntoinvert an hypothesis

e Learn to target hypothesis (and not just the goal)

Why are we learning this?

e To make your proofs smaller/simpler

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Exercise 1: transitivity over equals 7

UMASS
BOSTON

Theorem eq_trans : forall (T:Type) (x y z : T),
X=y—>y=2z->x-=z.

Proof.
intros T x y z eql eq2.
rewrite = eql.

yields

1 subgoal
T : Type
X, ¥, z : T
eql : x =y
eql : vy

1
N

| How do we conclude this proof?

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro




Exercise 1: transitivity over equals 7

UMASS
BOSTON

Theorem eq_trans : forall (T:Type) (x y z : T),
X=y—>y=2z->x-=z.

Proof.
intros T x y z eql eq2.
rewrite = eql.

yields

1 subgoal
T : Type
X, ¥, 2z : T
eql : x =y
eq2 : vy

1
N

| How do we conclude this proof? Yes, rewrite = eq2. reflexivity. works.

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro




Exercise 1: introducing apply m

BOSTON

Apply takes an hypothesis/lemma to conclude the goal.

apply eq2.
Qed.

apply takes 7X to conclude a goal ?X (resolves foralls in the hypothesis).

1 subgoal
T : Type
X, ¥V, z : T
eql : x =y
eqs : y =

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Applying conditional hypothesis ?//l

apply uses an hypothesis/theorem of formatH1 — ... = Hn — [, then solves goal G, and
produces new goals H1, ..., Hn.

Theorem eq_trans_2 : forall (T:Type) (x y z: T),
(x=y—>y=z->x=2) >
X =y =
y =z -
X = Z.
Proof.
intros T x y z eql eg2 eq3.
apply eql.

(Done in class.)

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Rewriting conditional hypothesis M

apply uses an hypothesis/theorem of formatH1 — ... = Hn — [, then solves goal G, and
produces new goals H1, ..., Hn.

Theorem eq_trans_3 : forall (T:Type) (x y z: T),
(x=y—>y=z->x=2) >

X =y —>

y =z —>

X = Z.
Proof.

intros T x y z eql eg2 eq3.
rewrite = eql.

(Done in class.)

I Notice that there are 2 conditions in eql, so we get 3 goals to solve.

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Recap ﬁg

What's the difference between reflexivity, rewrite, and apply?

1. reflexivity solves goals that can be simplified as an equality like 7X = ?X

2.rewrite = Htakes an hypothesisHoftypeHl = ... = Hn = ?X = ?Y, finds any sub-
term of the goal that matches ?X and replaces it by ?Y; it also produces goals H1,..., Hn.
rewrite does not care about what your goal is, just that the goal must contain a pattern ?

X.
3. apply Htakes an hypothesisHoftypeHl = ... = Hn = G and solves goal G; it creates
goals H1, ..., Hn.

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Apply with/Rewrite with 7

Theorem eqg-trans_nat : forall (x y z: nat),

X =1 —>
X =y =
y =z =
z = 1.
Proof.

intros x y z eql eq2 eq3.
assert (egd: x = z). {
apply eg_trans.
outputs

Unable to find an instance for the variable y.
We can supply the missing arguments using the keyword with: apply eq_trans with (y:=y).

| Can we solve the same theorem but use rewrite instead?

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Symmetry m

What about this exercise?

Theorem eqg_trans_nat : forall (x y z: nat),

X =1 -
X =y =
y =z —>
1 = z.
Proof.

intros x y z eql eq?2 eq3.
assert (eqd: x = z). {

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Symmetry m

What about this exercise?

Theorem eq_trans_nat : forall (x y z: nat),

X =1 -
X =y =
y =z —>
1 = z.
Proof.

intros x y z eql eq2 eq3.
assert (eq4: x = z). {

We canrewriteagoal 7X = ?Yinto ?Y = ?X with symmetry.

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Apply In example m

Theorem silly3' : forall (n : nat),
(beg_nat n 5 = true = beg_nat (S (S n)) 7 = true) =
true = beg_.nat n 5 -
true = beg_nat (S (S n)) 7.
Proof.
intros n eq H.
symmetry in H.
apply eq in H.

(Done in class.)

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



largetting hypothesis ?//l

e rewrite = H1 in H2
e symmetry in H
e apply H1 in H2

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Forward vs backward reasoning ?//l

If we have atheoremL: C1 = C2 — G:

e Goal takes last: apply to goal of type G and replaces G by C1 and C2

o Assumption takes first: apply to hypothesis L to an hypothesisH: C1and rewritesH:C2 -
>0

Proof styles:
e Forward reasoning: (apply in hypothesis) manipulate the hypothesis until we reach a

goal.
Standard in math textbooks.

 Backward reasoning: (apply to goal) manipulate the goal until you reach a state where

you can apply the hypothesis.
Idiomatic in Coq.

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Recall our encoding of natural numbers m

BOSTON

Inductive nat : Type :=
| 0 : nat
| S : nat = nat.

1. Does the equation S n = @ hold? Why?

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Recall our encoding of natural numbers m

BOSTON

Inductive nat : Type :=
| 0 : nat
| S : nat = nat.

1. Does the equation S n = @ hold? Why?
No the constructors are implicitly disjoint.

2.1fS n = S m,can we conclude something about the relation between n and m?

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Recall our encoding of natural numbers m

BOSTON

Inductive nat : Type :=
| 0 : nat
| S : nat = nat.

1. Does the equation S n = @ hold? Why?
No the constructors are implicitly disjoint.

2.1fS n = S m,can we conclude something about the relation between n and m?
Yes, constructor S is injective. Thatis, ifS n = S m, thenn = m holds.

These two principles are available to all inductive definitions! How do we use these two
properties in a proof?

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Proving that S is injective (1/2) m

BOSTON

Theorem S_injective : forall (n m : nat),
Sn=Sm-
n=m.
Proof.
intros n m eql.
inversion eql.

If we run inversion, we get:

1 subgoal

n, m : nat

eql : Sn=3Sm
HO : n=m

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Injectivity in constructors ?//l

Theorem S_injective : forall (n m : nat),
Sn=Sm-
n=m.
Proof.
intros n m eql.
inversion eql as [eq2].

If you want to name the generated hypothesis you must figure out the destruction pattern
anduseas [...]. Forinstance, if we run inversion eql as [eq2], we get:

1 subgoal
n, m : nat

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Disjoint constructors ?//l

Theorem beg_nat_0_1 : forall n,
beg_nat @ n = true > n = 0.
Proof.
intros n eql.
destruct n.

(To do in class.)

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Principle of explosion m

Ex falso (sequitur) quodlibet

inversion concludes absurd hypothesis, where there is an equality between different
constructors. Use inversion eql to conclude the proof below.

1 subgoal
n : nat
eql : false = true

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Principle of explosion 7

BOSTON

Exercise 2

Lemma zero_not_one:
B <> 1.
Proof.

« Symbol <> is the not-equal operator, usually denoted by #

Print <> will yield an error:

Syntax error: 'Firstorder' 'Solver' expected after 'Print' (in [vernac:command]).
To hide notations click View — Display notations:not (eq 0 (S 0))

Let us unfold not

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro




Principle ot explosion M

Exercise 2

Lemma zero_not_one: Proof state
0> 1 1 subgoal
Proof. (/1)
.unfold not. 2 - 1 — False
intros H.
inversion H.
Qed.

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Existential quantifier



Existential in a goal ?//l

Lemma absorb_exists:
forall v,
exists x:nat, x +y =vy.
Proof.
intros vy.

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Existential in a goal ?//l

Lemma absorb_exists:
forall v,
exists x:nat, x +y = vy.
Proof.
intros vy.

exists 0.
reflexivty.
Qed.

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Existential In an assumption m

Theorem exists_in_assume : forall n,
(exists m, n =4 +m) =
(exists 0, n = 2 + 0).

Proof.

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



Existential in an assumption .

BOSTON

Theorem exists_in_assume : forall n,
(exists m, n =4 +m) =
(exists 0, n = 2 + 0).

Proof.

intros H.
destruct H as (m, H).
simpl in *.
rewrite H.
exists (S (S m)).
reflexivity.

Qed.

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro




What we learned...

lactics.v

Exploding principle

Forward and backward proof styles
New tactics: apply Hand apply H in
Differences between apply and rewrite
New tactics: symmetry

New capability: rewrite ... in ...
New capability: simpl in ...
Constructors are disjoint and injective
Existential quantifier: exists

A,

UMASS
BOSTON

CS420 ) Moreontactics ) Lecturele ) Tiago Cogumbreiro



