CS420

Introduction to the Theory of Computation

Lecture 16: More on tactics

Tiago Cogumbreiro

Today we will...

- Rewriting terms: using equality assumption
- Case analysis: inspecting values
- Proofs by induction: generalizing case analysis

Chapters Basics.v and Induction.v

Today we will...

- Recap Induction.v and Lists.v
- Learn to apply lemmas (and not just rewrite)
- Learn to invert an hypothesis
- Learn to target hypothesis (and not just the goal)

Why are we learning this?

To make your proofs smaller/simpler

Exercise 1: transitivity over equals


```
Theorem eq_trans : forall (T:Type) (x y z : T),
   x = y \rightarrow y = z \rightarrow x = z.
 Proof.
   intros T x y z eq1 eq2.
   rewrite \rightarrow eq1.
yields
1 subgoal
T: Type
x, y, z : T
eq1: x = y
eq2 : y = z
```

 $_{-}(1/1)$

How do we conclude this proof?

y = z

Exercise 1: transitivity over equals


```
Theorem eq_trans : forall (T:Type) (x y z : T),
    x = y → y = z → x = z.
Proof.
    intros T x y z eq1 eq2.
    rewrite → eq1.

yields
1 subgoal
T : Type
```

```
x, y, z : T
eq1 : x = y
eq2 : y = z
-----(1/1)
y = z
```

How do we conclude this proof? Yes, rewrite \rightarrow eq2. reflexivity. works.

Exercise 1: introducing apply

Apply takes an hypothesis/lemma to conclude the goal.

Applying conditional hypothesis

apply uses an hypothesis/theorem of format H1 $\rightarrow \dots \rightarrow$ Hn \rightarrow G, then solves goal G, and produces new goals H1, ..., Hn.

```
Theorem eq_trans_2 : forall (T:Type) (x y z: T),

(x = y \rightarrow y = z \rightarrow x = z) \rightarrow (* eq1 *)

x = y \rightarrow (* eq2 *)

y = z \rightarrow (* eq3 *)

x = z.

Proof.

intros T x y z eq1 eq2 eq3.

apply eq1. (* x = y \rightarrow y = z \rightarrow x = z *)
```

(Done in class.)

Rewriting conditional hypothesis

apply uses an hypothesis/theorem of format H1 $\rightarrow \dots \rightarrow$ Hn \rightarrow G, then solves goal G, and produces new goals H1, ..., Hn.

```
Theorem eq_trans_3 : forall (T:Type) (x y z: T),

(x = y \rightarrow y = z \rightarrow x = z) \rightarrow (* eq1 *)

x = y \rightarrow (* eq2 *)

y = z \rightarrow (* eq3 *)

x = z.

Proof.

intros T x y z eq1 eq2 eq3.

rewrite \rightarrow eq1. (* x = y \rightarrow y = z \rightarrow x = z *)
```

(Done in class.)

Notice that there are 2 conditions in eq1, so we get 3 goals to solve.

Recap

What's the difference between reflexivity, rewrite, and apply?

- 1. reflexivity solves goals that can be simplified as an equality like ?X = ?X
- 2. rewrite \rightarrow H takes an *hypothesis* H of type H1 \rightarrow ... \rightarrow Hn \rightarrow ?X = ?Y, finds any subterm of the goal that matches ?X and replaces it by ?Y; it also produces goals H1,..., Hn. rewrite does not care about what your goal is, just that the goal **must** contain a pattern ? X.
- 3. apply H takes an hypothesis H of type H1 $\rightarrow \dots \rightarrow$ Hn \rightarrow G and solves *goal* G; it creates goals H1, ..., Hn.

Apply with/Rewrite with


```
Theorem eq_trans_nat : forall (x y z: nat),
  x = 1 →
  x = y →
  y = z →
  z = 1.
Proof.
intros x y z eq1 eq2 eq3.
assert (eq4: x = z). {
  apply eq_trans.
```

outputs

Unable to find an instance for the variable y.

We can supply the missing arguments using the keyword with: apply eq_trans with (y:=y).

Can we solve the same theorem but use rewrite instead?

Symmetry

What about this exercise?

```
Theorem eq_trans_nat : forall (x y z: nat),
    x = 1 →
    x = y →
    y = z →
    1 = z.
Proof.
    intros x y z eq1 eq2 eq3.
    assert (eq4: x = z). {
```

Symmetry

What about this exercise?

```
Theorem eq_trans_nat : forall (x y z: nat),
  x = 1 ->
  x = y ->
  y = z ->
  1 = z.
Proof.
  intros x y z eq1 eq2 eq3.
  assert (eq4: x = z). {
```

We can rewrite a goal ?X = ?Y into ?Y = ?X with symmetry.

Apply in example


```
Theorem silly3' : forall (n : nat),
  (beq_nat n 5 = true → beq_nat (S (S n)) 7 = true) →
  true = beq_nat n 5 →
  true = beq_nat (S (S n)) 7.

Proof.
  intros n eq H.
  symmetry in H.
  apply eq in H.
```

(Done in class.)

Targetting hypothesis

- rewrite → H1 in H2
- symmetry in H
- apply H1 in H2

Forward vs backward reasoning

If we have a theorem L: $C1 \rightarrow C2 \rightarrow G$:

- Goal takes last: apply to goal of type G and replaces G by C1 and C2
- Assumption takes first: apply to hypothesis L to an hypothesis H: C1 and rewrites H:C2 G

Proof styles:

 Forward reasoning: (apply in hypothesis) manipulate the hypothesis until we reach a goal.

Standard in math textbooks.

• Backward reasoning: (apply to goal) manipulate the goal until you reach a state where you can apply the hypothesis.

Idiomatic in Coq.

Recall our encoding of natural numbers


```
Inductive nat : Type :=
    | 0 : nat
    | S : nat → nat.
```

1. Does the equation S n = 0 hold? Why?

Recall our encoding of natural numbers


```
Inductive nat : Type :=
    | 0 : nat
    | S : nat → nat.
```

- 1. Does the equation S n = 0 hold? Why?

 No the constructors are implicitly **disjoint**.
- 2. If S n = S m, can we conclude something about the relation between n and m?

Recall our encoding of natural numbers


```
Inductive nat : Type :=
    | 0 : nat
    | S : nat → nat.
```

- 1. Does the equation S n = 0 hold? Why?

 No the constructors are implicitly **disjoint**.

These two principles are available to all inductive definitions! How do we use these two properties in a proof?

Proving that S is injective (1/2)


```
Theorem S_injective : forall (n m : nat),
   S n = S m →
   n = m.
Proof.
   intros n m eq1.
   inversion eq1.
```

If we run inversion, we get:

```
1 subgoal
n, m : nat
eq1 : S n = S m
H0 : n = m
-----(1/1)
m = m
```

Injectivity in constructors


```
Theorem S_injective : forall (n m : nat),
   S n = S m →
   n = m.
Proof.
   intros n m eq1.
   inversion eq1 as [eq2].
```

If you want to name the generated hypothesis you must figure out the destruction pattern and use as [...]. For instance, if we run inversion eq1 as [eq2], we get:

```
1 subgoal
n, m : nat
eq1 : S n = S m
eq2 : n = m
______(1/1
m = m
```

Disjoint constructors


```
Theorem beq_nat_0_1 : forall n,
   beq_nat 0 n = true → n = 0.
Proof.
  intros n eq1.
  destruct n.
```

(To do in class.)

Principle of explosion

Ex falso (sequitur) quodlibet

inversion concludes absurd hypothesis, where there is an equality between different constructors. Use inversion eq1 to conclude the proof below.

```
1 subgoal
n : nat
eq1 : false = true
______(1/1)
S n = 0
```

Principle of explosion

Exercise 2

```
Lemma zero_not_one:
  0 <> 1.
Proof.
```

- Symbol <> is the not-equal operator, usually denoted by \neq
- Print <> will yield an error:
 Syntax error: 'Firstorder' 'Solver' expected after 'Print' (in [vernac:command]).
- To hide notations click View \rightarrow Display notations: not (eq 0 (S 0))
- Let us unfold not

Principle of explosion

Exercise 2

```
Lemma zero_not_one:
    0 <> 1.
Proof.
    unfold not.
    intros H.
    inversion H.
Qed.
```

Proof state

```
1 subgoal
_____(1/1)
0 = 1 → False
```

Existential quantifier

Existential in a goal


```
Lemma absorb_exists:
    forall y,
    exists x:nat, x + y = y.
Proof.
    intros y.
        (* Use your intuition, what is the answer? *)
```



```
Lemma absorb_exists:
    forall y,
    exists x:nat, x + y = y.
Proof.
    intros y.
    (* Use your intuition, what is the answer? *)
    exists 0.
    reflexivty.
Qed.
```

Existential in an assumption


```
Theorem exists_in_assume : forall n,
  (exists m, n = 4 + m) →
  (exists o, n = 2 + o).
Proof.
```



```
Theorem exists_in_assume : forall n,
  (exists m, n = 4 + m) \rightarrow
  (exists o, n = 2 + o).
Proof.
 intros H.
  destruct H as (m, H).
  simpl in *.
  rewrite H.
 exists (S (S m)).
  reflexivity.
Qed.
```

What we learned...

Tactics.v

- Exploding principle
- Forward and backward proof styles
- New tactics: apply H and apply H in
- Differences between apply and rewrite
- New tactics: symmetry
- New capability: rewrite ... in ...
- New capability: simpl in ...
- Constructors are disjoint and injective
- Existential quantifier: exists