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Today we will... 7

e Rewriting terms: using equality assumption
e Case analysis: inspecting values
e Proofs by induction: generalizing case analysis

| ChaptersBasics.vand Induction.v
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Rewriting terms
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Multiple pre-conditions in a lemma ?//l

Theorem plus_id_example : forall n m:nat,
n=m-
n+n=m+nmn.
Proof.
intros n.
intros m.
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Multiple pre-conditions in a lemma M

Theorem plus_id_example : forall n m:nat,
n=m-
n+n=m+nmn.
Proof.
intros n.
intros m.

yields
1 subgoal
n, m : nat

nN=m—=n+n=m+mn
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Multiple pre-conditions in a lemma ?//l

applying intros Hyields
1 subgoal
n, m : nat

N+nNn=m++nm
How do we use H? New tactic: use rewrite = H(lhs becomes rhs)

1 subgoal
n, m : nat

I How do we conclude? Can you write a Theorem that replicates the proof-state above?
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Let us prove this example m

Theorem plus_id_exercise : forall n m o : nat,
nN=m—=>m=0->n+m=m+ 0.
Proof.

(Donein class...)
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Comparing naturals m

| Consider this recursive function that tests if two naturals are equal.

Fixpoint beg_nat (n m : nat) : bool :=
match n with
| 0 = match m with
| 0 = true
| S m' = false
end
| S n' = match m with
| 0 = false
| Sm' = beg_nat n' m'
end
end.
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How do we prove this example? m

Theorem plus_1_neq_@_firsttry : forall n : nat,
beg_nat (plus n 1) 0 = false.

Proof.
intros n.

yields

1 subgoal
n : nat

beg_nat (plus n 1) 0 = false
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How do we prove this example? M

Theorem plus_1_neq_@_firsttry : forall n : nat,
beg_nat (plus n 1) 0 = false.

Proof.
intros n.

yields
1 subgoal
n : nat
beg_nat (plus n 1) 0 = false
Apply simpl and it does nothing. Apply reflexivity:

In environment
n : nat
Unable to unify "false" with "beg_nat (plus n 1) 0".
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Why does simpl fail? 7

Q: Why can'tbeg_nat (n + 1) be simplified? (Hint: inspect its definition.)
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Why does simpl fail? 7

Q: Why can'tbeg_nat (n + 1) be simplified? (Hint: inspect its definition.)
A: beg_nat expects the first parameter to be either @ or S 7n, but we have an expressionn +
1(orplus n 1).
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Why does simpl fail? 7

Q: Why can'tbeg_nat (n + 1) be simplified? (Hint: inspect its definition.)

A: beg_nat expects the first parameter to be either @ or S 7n, but we have an expressionn +
1(orplus n 1).

Q: Can we simplify plus n 17?
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Why does simpl fail? 7

Q: Why can'tbeg_nat (n + 1) be simplified? (Hint: inspect its definition.)

A: beg_nat expects the first parameter to be either @ or S 7n, but we have an expressionn +
1(orplus n 1).

Q: Can we simplify plus n 17?

A: No because plus decreases on the first parameter, not on the second!
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Case analysis (1/3) ?//l

Let us try to inspect value n. Use: destruct n as [| n'].

2 subgoals
______________________________________ (1/2)
begq_nat (8 + 1) @ = false
______________________________________ (2/2)
beg_nat (S n' + 1) @ = false

Now we have two goals to provel!

1 subgoal
______________________________________ (1/1)

beg_nat (0 + 1) @ = false
How do we prove this?
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Case analysis (2/3) ?//l

After we conclude the first goal we get:
This subproof is complete, but there are some unfocused goals:

______________________________________ (1/1)
beg_nat (S n' + 1) @ = false
Use another bullet (-).
1 subgoal
n' : nat
______________________________________ (1/1)

beg_nat (S n' + 1) @ = false
And prove the goal above as well.

| Why can the latter be simplified?

CS420 ) Case analysis & proof by induction ) Lecturel5 ) Tiago Cogumbreiro



A,

Case analysis (3/3) e
e Use:destruct n as [| n']when you want to explicitly name the variables being
introduced

e Otherwise, use: destruct nand let Coq automatically name the variables.

| Using automatically generated variable names makes the proofs more brittle to change.
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Inductionyv
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Fxample: prove this lemma (1/4) m

Theorem plus_n_0 : forall n:nat,
n=n+0.
Proof.
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Fxample: prove this lemma (1/4) m

Theorem plus_n_0 : forall n:nat,
n=n+0.
Proof.

Tactic simpl does nothing.
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Fxample: prove this lemma (1/4) m

Theorem plus_n_0 : forall n:nat,
n=n+0.
Proof.

Tactic simpl does nothing. Tactic reflxivity fails.
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Fxample: prove this lemma (1/4) m

Theorem plus_n_0 : forall n:nat,
n=n+0.
Proof.

Tactic simpl does nothing. Tactic reflxivity fails. Apply destruct n.

2 subgoals
______________________________________ (1/2)
6=0+20
______________________________________ (2/2)
Sn=Sn+20
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Fxample: prove this lemma (2/4) m

After proving the first, we get

1 subgoal
n : nat

Applying simpl yields:

1 subgoal
n : nat

Sn=S(nh+0)
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Fxample: prove this lemma (2/4) m

After proving the first, we get

1 subgoal
n : nat

Applying simpl yields:

1 subgoal
n : nat

Sn=S(nh+0)
Tactic reflexivity fails and there is nothing to rewrite.
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We need an induction principle of nat m

For some property P we want to prove.
e Show that P(0) holds.

e Given the induction hypothesis P(n), show that P(n + 1) holds.

Conclude that P(n) holds for all n.
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Fxample: prove this lemma (3/4) m

Apply induction n.

2 subgoals
______________________________________ (1/2)
0=0+20
______________________________________ (2/2)
Sn=Sn+20

How do we prove the first goal?
Compare induction nwith destruct n.
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Fxample: prove this lemma (4/4) m

After proving the first goal we get

1 subgoal
n : nat
IHh : n=n+ 20

Sn=Sn+20
applying simpl yields

1 subgoal
n : nat
IHh : n=n+ 20

Sn=S(nh+0)

I How do we conclude this proof?
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INntermediary results ?//l

Theorem mult_@_plus' : forall n m : nat,
0+n) *m=n*nm.

Proof.
intros n m.
assert (H: @ + n = n). { reflexivity. }
rewrite = H.
reflexivity. Qed.

His a variable name, you can pick whichever you like.

Your intermediary result will capture all of the existing hypothesis.
It may include forall.

We use braces { and } to prove a sub-goal.
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Formal versus informal proofs m

The objective of a mechanical (formal) proofs is to appease the proof checker.
The objective of an informal proof is to convince (logically) the reader.

1tac proofs are imperative, assume the reader can step through

In informal proofs we want to help the reader reconstruct the proof state.
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Reading an 1tac proof ?//l

Theorem plus_assoc : forall nm p : nat,
n+ (m+p)=_(n+m+p.
Proof.
intros n m p. induction n as [| n' IHn'].
- reflexivity.
- simpl. rewrite = IHn'. reflexivity. Qed.

1. The proof follows by induction on n.
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Reading an 1tac proof ?//l

Theorem plus_assoc : forall nm p : nat,
n+ (m+p)=_(n+m+p.
Proof.
intros n m p. induction n as [| n' IHn'].
- reflexivity.
- simpl. rewrite = IHn'. reflexivity. Qed.

1. The proof follows by induction on n.

2. In the base case, we have that n = 0. We need to show 0 + (m + p) = 0 + m + p,
which follows by the definition of +.

CS420 ) Case analysis & proof by induction ) Lecturel5 ) Tiago Cogumbreiro



Reading an 1tac proof ?//l

Theorem plus_assoc : forall nm p : nat,
n+ (m+p)=_(n+m+p.
Proof.
intros n m p. induction n as [| n' IHn'].
- reflexivity.
- simpl. rewrite = IHn'. reflexivity. Qed.

1. The proof follows by induction on n.

2. In the base case, we have that n = 0. We need to show 0 + (m + p) = 0 + m + p,
which follows by the definition of +.

3. In the inductive case, we have n = S n' and must show Sn' + (m + p) = Sn' + m +

P.
From the definition of + it follows that S (n' + (m + p)) = S (n' + m + p).
The proof concludes by applying the induction hypothesis n’ + (m + p) =n +m+ P
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Basic.vV ﬁ%

e Learn:interplay between forall, simpl, and reflexivity
New syntax: = to represent implication

New tactic: rewrite to replace terms using equality
New tactic: destruct to perform case analysis

New tactic: bullets (-, *, and +) and scopes ({ and })
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Induction.v ﬁ%

e Learn:induction principle for natural numbers.
 New tactic: induction

e New tactic: assert

e Learn: formal vs informal proofs
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| tac vocabulary ?//l

o simpl

e reflexivity
e intros

e rewrite

e destruct

e induction

e assert
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https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.simpl
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.reflexivity
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.intros
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.rewrite
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.destruct
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.induction
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.assert

