CS420

Introduction to the Theory of Computation

Lecture 14: A primer on the Coq programming language

Tiago Cogumbreiro

On studying effectively for this content

Setup

- 1. Have CoqIDE available in a computer you have access to
- 2. Have 1f.zip extracted in a directory

Textbook

<u>Logical Foundations (Software Foundations - Volume 1)</u>. Benjamin C. Pierce, et al. 2017.
 Version 5.3.

On studying effectively for this content

Suggestions

- Read the chapter before the class:

 This way we can direct the class to specific details of a chapter, rather than a more topical end-to-end description of the chapter.
- Attempt to write the exercises before the class: We can guide a class to cover certain details of a difficult exercise.
- Use the office hours and our online forum: Coq is a unusual programming language, so you will get stuck simply because you are not familiar with the IDE or a quirk of the language

On studying effectively for this content

Exercises structure

- 1. Open the chapter file with CoqIDE: that file is the chapter we are covering
- 2. Read the chapter and fill in any exercise
- 3. To complete an assignment ensure you have O occurrences of Admitted

Basics.v: Part 1

A primer on the programming language Coq

We will learn the core principles behind Coq

Enumerated type

A data type where the user specifies the various distinct values that inhabit the type.

Examples?

A data type where the user specifies the various distinct values that inhabit the type.

Examples?

- boolean
- 4 suits of cards
- byte
- int32
- int64

Declare an enumerated type

- Inductive defines an (enumerated) type by cases.
- The type is named day and declared as a: Type (Line 1).
- Enumerated types are delimited by the assignment operator (:=) and a dot (.).
- Type day consists of 7 cases, each of which is is tagged with the type (day).

Printing to the standard output

Compute prints the result of an expression (terminated with dot):

Interacting with the outside world

- Programming in Coq is different most popular programming paradigms
- Programming is an **interactive** development process
- The IDE is very helpful: workflow similar to using a debugger
- It's a REPL on steroids!
- Compute evaluates an expression, similar to printf


```
match d with
| monday ⇒ tuesday
| tuesday ⇒ wednesday
| wednesday ⇒ thursday
| thursday ⇒ friday
| friday ⇒ monday
| saturday ⇒ monday
| sunday ⇒ monday
end
```

Inspecting an enumerated type


```
match d with
| monday ⇒ tuesday
| tuesday ⇒ wednesday
| wednesday ⇒ thursday
| thursday ⇒ friday
| friday ⇒ monday
| saturday ⇒ monday
| sunday ⇒ monday
end
```

- match performs pattern matching on variable d.
- Each pattern-match is called a branch; the branches are delimited by keywords with and end.
- Each branch is prefixed by a mid-bar (|) (⇒), a pattern (eg, monday), an arrow (⇒), and a
 return value

Pattern matching example


```
Compute match monday with
| monday ⇒ tuesday
| tuesday ⇒ wednesday
| wednesday ⇒ thursday
| thursday ⇒ friday
| friday ⇒ monday
| saturday ⇒ monday
| sunday ⇒ monday
end.
```

Create a function


```
Definition next_weekday (d:day) : day :=
  match d with
  | monday ⇒ tuesday
  | tuesday ⇒ wednesday
  | wednesday ⇒ thursday
  | thursday ⇒ friday
  | friday ⇒ monday
  | saturday ⇒ monday
  | sunday ⇒ monday
  end.
```

Create a function


```
Definition next_weekday (d:day) : day :=
  match d with
  | monday ⇒ tuesday
  | tuesday ⇒ wednesday
  | wednesday ⇒ thursday
  | thursday ⇒ friday
  | friday ⇒ monday
  | saturday ⇒ monday
  | sunday ⇒ monday
  end.
```

- Definition is used to declare a function.
- In this case next_weekday has one parameter d of type day and returns (:) a value of type day.
- Between the assignment operator (:=) and the dot (.), we have the body of the function.

Example 2

next_weekday friday is the same as monday (after evaluation)

Your first proof


```
Example test_next_weekday:
    next_weekday (next_weekday saturday) = tuesday.
Proof.
    simpl. (* simplify left-hand side *)
    reflexivity. (* use reflexivity since we have tuesday = tuesday *)
Qed.
```

Your first proof


```
Example test_next_weekday:
   next_weekday (next_weekday saturday) = tuesday.

Proof.
   simpl. (* simplify left-hand side *)
   reflexivity. (* use reflexivity since we have tuesday = tuesday *)

Qed.
```

- Example prefixes the name of the proposition we want to prove.
- The return type (:) is a (logical) **proposition** stating that two values are equal (after evaluation).
- The body of function test_next_weekday uses the 1tac proof language.
- The dot (.) after the type puts us in proof mode. (Read as "defined below".)
- This is essentially a unit test.

Itac is imperative! You can step through the state with CoqIDE
Proof begins an Itac-scope, yielding
1 subgoal
______(1/1)
next_weekday (next_weekday saturday) = tuesday
Tactic simpl evaluates expressions in a goal (normalizes them)

Ltac: Coq's proof language


```
1 subgoal _____(1/1) tuesday = tuesday
```

reflexivity solves a goal with a pattern ?X = ?X

No more subgoals.

• Qed ends an ltac-scope and ensures nothing is left to prove

Function types

Use Check to print the type of an expression:

```
Check next_weekday.
```

which outputs

next_weekday

: day \rightarrow day

Function type day \rightarrow day takes one value of type day and returns a value of type day.

Compound types

Enumerated types are very simple. You can think of them as a typed collection of constants. We call each enumerated value a **constructor**.

```
Inductive rgb : Type :=
    | red : rgb
    | green : rgb
    | blue : rgb.
```

Compound types

Enumerated types are very simple. You can think of them as a typed collection of constants. We call each enumerated value a **constructor**.

A **compound type** builds on other existing types. Their constructors accept *multiple* parameters, like functions do.

```
Inductive color : Type :=
    | black : color
    | white : color
    | primary : rgb → color.
```



```
Definition monochrome (c : color) : bool :=
   match c with
   | black ⇒ true
   | white ⇒ true
   | primary p ⇒ false
   end.
```

Manipulating compound values


```
Definition monochrome (c : color) : bool :=
   match c with
   | black ⇒ true
   | white ⇒ true
   | primary p ⇒ false
   end.
```

We can use the place-holder keyword _ to mean a variable we do not mean to use.

```
Definition monochrome (c : color) : bool :=
  match c with
  | black ⇒ true
  | white ⇒ true
  | primary _ ⇒ false
  end.
```

Compound types

Allows you to: type-tag, fixed-number of values

Inductive types

How do we describe arbitrarily large/composed values?

Inductive types

How do we describe arbitrarily large/composed values? Here's the definition of natural numbers, as found in the standard library:

- 0 is a constructor of type nat. Think of the numeral 0.
- If n is an expression of type nat, then S n is also an expression of type nat. Think of expression n + 1.

What's the difference between nat and uint32?

Recursive functions

Recursive functions are declared differently with Fixpoint, rather than Definition.

```
Fixpoint evenb (n:nat) : bool :=
  match n with
  | 0 ⇒ true
  | $ 0 ⇒ false
  | $ ($ n') ⇒ evenb n'
  end.
```

Using Definition instead of Fixpoint will throw the following error:

The reference evenb was not found in the current environment.

Not all recursive functions can be described. Coq has to understand that one value is getting "smaller."

All functions must be total: all inputs must produce one output. All functions must terminate.

Back to proving

An example


```
Example plus_0_4 : 0 + 5 = 4. Proof.
```

How do we prove this?

An example


```
Example plus_0_4 : 0 + 5 = 4. Proof.
```

How do we prove this?

- We cannot. This is unprovable.
- Because it is unprovable, there is no proof script that can satisfy this claim.

Instead, we can prove the following (later)

```
Example plus_0_5_not_4 : 0 + 5 <> 4.
```



```
Example plus_0_5: 0 + 5 = 5. Proof.
```

How do we prove this? We "know" it is true, but why do we know it is true?


```
Example plus_0_5 : 0 + 5 = 5.

Proof.
```

How do we prove this? We "know" it is true, but why do we know it is true?

There are two ways:

- 1. We **understand** the definition of plus and use that to our advantage.
- 2. We **brute-force** and try the tactics we know (simpl, reflexivity)


```
Example plus_0_6 : 0 + 6 = 6. Proof.
```

How do we prove this?


```
Example plus_0_6: 0 + 6 = 6. Proof.
```

How do we prove this?

The same as we proved plus_0_5. This result is true for any natural n!

Ranging over all elements of a set


```
Theorem plus_0_n : forall n : nat, 0 + n = n.
Proof.
  intros n.
  simpl.
  reflexivity.
Qed.
```

- Theorem is just an alias for Example and Definition.
- forall introduces a variable of a given type, eg nat; the logical statement must be true for all elements of the type of that variable.
- Tactic intros is the dual of forall in the tactics language

Forall example

Given

```
1 subgoal
-----(1/1)
forall n : nat, 0 + n = n
```

and applying intros nyields

```
1 subgoal
n : nat
-----(1/1)
0 + n = n
```

The n is a variable name of your choosing.

Try replacing intros n by intros m.


```
1 subgoal
_______(1/1)
forall n : nat, 0 + n = n

Applying simpl yields
1 subgoal
______(1/1)
forall n : nat, n = n

Applying reflexivity yields

No more subgoals.
```

reflexivity also simplifies terms


```
1 subgoal
-----(1/1)
forall n : nat, 0 + n = n
```

Applying reflexivity yields No more subgoals.

Summary

- simpl and reflexivity work under forall binders
- simpl only unfolds definitions of the goal; does not conclude a proof
- reflexivity concludes proofs and simplifies

Basic.v

- New syntax: Definition declares a non-recursive function
- New syntax: Compute evaluates an expression and outputs the result + type
- New syntax: Check prints the type of an expression
- New syntax: Inductive defines inductive data structures
- New syntax: Fixpoint declares a (possibly) recursive function
- New syntax: match performs pattern matching on a value
- New tactic: simpl evaluates functions if possible
- New tactic: reflexivity concludes a goal ?X = ?X

Ltac vocabulary

- <u>simpl</u>
- <u>reflexivity</u>