CS420

Introduction to the Theory of Computation

Lecture 14: A primer on the Coq programming language

Tiago Cogumbreiro
On studying effectively for this content

Setup

1. Have CoqIDE available in a computer you have access to
2. Have lf.zip extracted in a directory

Textbook

Suggestions

- **Read the chapter before the class:** This way we can direct the class to specific details of a chapter, rather than a more topical end-to-end description of the chapter.

- **Attempt to write the exercises before the class:** We can guide a class to cover certain details of a difficult exercise.

- **Use the office hours and our online forum:** Coq is an unusual programming language, so you will get stuck simply because you are not familiar with the IDE or a quirk of the language.
On studying effectively for this content

Exercises structure

1. Open the chapter file with CoqIDE: that file is the chapter we are covering
2. Read the chapter and fill in any exercise
3. To complete an assignment ensure you have 0 occurrences of Admitted
Basics.v: Part 1

A primer on the programming language Coq

We will learn the core principles behind Coq
Enumerated type

A data type where the user specifies the various distinct values that inhabit the type.

Examples?
Enumerated type

A data type where the user specifies the various distinct values that inhabit the type.

Examples?

- boolean
- 4 suits of cards
- byte
- int32
- int64
Inductive day : Type :=
 | monday : day
 | tuesday : day
 | wednesday : day
 | thursday : day
 | friday : day
 | saturday : day
 | sunday : day.

- Inductive defines an (enumerated) type by cases.
- The type is named day and declared as a : Type (Line 1).
- Enumerated types are delimited by the assignment operator (:=) and a dot (.).
- Type day consists of 7 cases, each of which is is tagged with the type (day).
Printing to the standard output

Compute prints the result of an expression (terminated with dot):

```
Compute monday.
```

prints

```
= tuesday
: day
```
Interacting with the outside world

- Programming in Coq is different from most popular programming paradigms.
- Programming is an **interactive** development process.
- The IDE is very helpful: workflow similar to using a debugger.
- It's a REPL on steroids!
- Compute evaluates an expression, similar to `printf`.

A primer on the Coq programming language

Lecture 14

Tiago Cogumbreiro
Inspecting an enumerated type

```coq
match d with
| monday  ⇒ tuesday
| tuesday ⇒ wednesday
| wednesday ⇒ thursday
| thursday ⇒ friday
| friday  ⇒ monday
| saturday ⇒ monday
| sunday  ⇒ monday
end
```
Inspecting an enumerated type

```coq
match d with
  | monday ⇒ tuesday
  | tuesday ⇒ wednesday
  | wednesday ⇒ thursday
  | thursday ⇒ friday
  | friday ⇒ monday
  | saturday ⇒ monday
  | sunday ⇒ monday
end
```

- match performs **pattern matching** on variable d.
- Each pattern-match is called a **branch**; the branches are delimited by keywords with and end.
- Each *branch* is prefixed by a mid-bar (\(\mid\)) (⇒), a pattern (eg, monday), an arrow (⇒), and a return value
Pattern matching example

Compute match monday with
| monday ⇒ tuesday
| tuesday ⇒ wednesday
| wednesday ⇒ thursday
| thursday ⇒ friday
| friday ⇒ monday
| saturday ⇒ monday
| sunday ⇒ monday
end.
Create a function

Definition `next_weekday (d: day) : day :=`

```coq
match d with
| monday ⇒ tuesday
| tuesday ⇒ wednesday
| wednesday ⇒ thursday
| thursday ⇒ friday
| friday ⇒ monday
| saturday ⇒ monday
| sunday ⇒ monday
end.
```
Create a function

```
Definition next_weekday (d: day) : day :=
  match d with
  | monday => tuesday
  | tuesday => wednesday
  | wednesday => thursday
  | thursday => friday
  | friday => monday
  | saturday => monday
  | sunday => monday
  end.
```

- Definition is used to declare a function.
- In this case `next_weekday` has one parameter `d` of type `day` and returns (`:`) a value of type `day`.
- Between the assignment operator (`:=`) and the dot (`.`), we have the body of the function.
Example 2

```
Compute (next_weekday friday).
```

yields (Message pane)

```
  = monday
  : day
```

next_weekday friday is the same as monday (after evaluation)
Example test_next_weekday:
next_weekday (next_weekday saturday) = tuesday.

Proof.
 simpl. (* simplify left-hand side *)
 reflexivity. (* use reflexivity since we have tuesday = tuesday *)
Qed.
Example test_next_weekday:
 next_weekday (next_weekday saturday) = tuesday.
Proof.
 simpl. (* simplify left-hand side *)
 reflexivity. (* use reflexivity since we have tuesday = tuesday *)
Qed.

- Example prefixes the name of the proposition we want to prove.
- The return type (:) is a (logical) **proposition** stating that two values are equal (after evaluation).
- The body of function test_next_weekday uses the Ltac proof language.
- The dot (.) after the type puts us in proof mode. (Read as "defined below").
- This is essentially a unit test.
Ltac: Coq's proof language

Ltac is **imperative**! You can step through the state with CoqIDE

Proof begins an ltac-scope, yielding

1 subgoal

```
______________________________________(1/1)
next_weekday (next_weekday saturday) = tuesday
```

Tactic `simpl` evaluates expressions in a goal (normalizes them)
Ltac: Coq's proof language

1 subgoal
______________________________________(1/1)
tuesday = tuesday
 • reflexivity solves a goal with a pattern ?X = ?X

No more subgoals.
 • Qed ends an ltac-scope and ensures nothing is left to prove
Function types

Use Check to print the type of an expression:

```
Check next_weekday.
```

which outputs

```
next_weekday : day -> day
```

Function type `day -> day` takes one value of type `day` and returns a value of type `day`.
Compound types

Enumerated types are very simple. You can think of them as a typed collection of constants. We call each enumerated value a **constructor**.

```coq
Inductive rgb : Type :=
    | red : rgb
    | green : rgb
    | blue : rgb.
```
Compound types

Enumerated types are very simple. You can think of them as a typed collection of constants. We call each enumerated value a constructor.

```
Inductive rgb : Type :=
| red : rgb
| green : rgb
| blue : rgb.
```

A compound type builds on other existing types. Their constructors accept multiple parameters, like functions do.

```
Inductive color : Type :=
| black : color
| white : color
| primary : rgb \rightarrow color.
```
Manipulating compound values

Definition monochrome (c : color) : bool :=
 match c with
 | black ⇒ true
 | white ⇒ true
 | primary p ⇒ false
end.
Manipulating compound values

Definition monochrome (c : color) : bool :=
 match c with
 | black ⇒ true
 | white ⇒ true
 | primary p ⇒ false
 end.

We can use the place-holder keyword _ to mean a variable we do not mean to use.

Definition monochrome (c : color) : bool :=
 match c with
 | black ⇒ true
 | white ⇒ true
 | primary _ ⇒ false
 end.
Compound types

Allows you to: type-tag, fixed-number of values
Inductive types

How do we describe arbitrarily large/composed values?
Inductive types

How do we describe arbitrarily large/composed values?
Here's the definition of natural numbers, as found in the standard library:

\[
\text{Inductive } \text{nat} \text{ : Type :=}
\begin{align*}
| \text{O} & : \text{nat} \\
| \text{S} & : \text{nat} \to \text{nat}.
\end{align*}
\]

- \(0\) is a constructor of type nat.
 Think of the numeral 0.

- If \(n\) is an expression of type nat, then \(S \ n\) is also an expression of type nat.
 Think of expression \(n + 1\).

What's the difference between \text{nat} and \text{uint32}?
Recursive functions

Recursive functions are declared differently with Fixpoint, rather than Definition.

```coq
Fixpoint evenb (n:nat) : bool :=
  match n with
  | O ⇒ true
  | S O ⇒ false
  | S (S n') ⇒ evenb n'
end.
```

Using Definition instead of Fixpoint will throw the following error:

The reference evenb was not found in the current environment.

Not all recursive functions can be described. Coq has to understand that one value is getting "smaller."

All functions must be total: all inputs must produce one output. *All functions must terminate.*
Back to proving
An example

Example plus_0_4 : 0 + 5 = 4.
Proof.

How do we prove this?
An example

Example plus_0_4 : 0 + 5 = 4.
Proof.

How do we prove this?

- **We cannot.** This is unprovable.
 - Because it is unprovable, there is no proof script that can satisfy this claim.

Instead, we can prove the following (later)

Example plus_0_5_not_4 : 0 + 5 <> 4.
Another example

Example plus_0_5 : 0 + 5 = 5.
Proof.

How do we prove this? We "know" it is true, but why do we know it is true?
Another example

Example plus_0_5 : 0 + 5 = 5.
Proof.

How do we prove this? We "know" it is true, but why do we know it is true?

There are two ways:

1. We **understand** the definition of plus and use that to our advantage.
2. We **brute-force** and try the tactics we know (simpl, reflexivity)

```coq
Fixpoint plus (n : nat) (m : nat) : nat :=
  match n with
  | 0 ⇒ m
  | S n' ⇒ S (plus n' m)
end.

Notation "x + y" := (plus x y) (at level 50, left associativity) : nat_scope.
```
Another example

Example plus_0_6 : 0 + 6 = 6.
Proof.

How do we prove this?
Another example

Example plus_0_6 : 0 + 6 = 6.
Proof.

How do we prove this?

The same as we proved plus_0_5. This result is true for any natural n!
Theorem **plus_0_n** : \(\forall n : \text{nat}, 0 + n = n. \)

Proof.

```coq
intros n.
simpl.
reflexivity.
Qed.
```

- Theorem is just an *alias for Example and Definition*.
- \(\forall \) introduces a variable of a given type, eg nat; the logical statement must be true for all elements of the type of that variable.
- Tactic intros is the dual of \(\forall \) in the tactics language
Forall example

Given

1 subgoal
----------------------------------(1/1)
forall n : nat, 0 + n = n

and applying intros n yields

1 subgoal
n : nat
----------------------------------(1/1)
0 + n = n

The n is a variable name of your choosing.

Try replacing intros n by intros m.
simpl and reflexivity work under forall

1 subgoal
______________________________________(1/1)
forall n : nat, \(\emptyset + n = n \)

Applying simpl yields
1 subgoal
______________________________________(1/1)
forall n : nat, n = n
Applying reflexivity yields
No more subgoals.
reflexivity also simplifies terms

1 subgoal
_____________________________\(1/1\)
\(\forall n : \text{nat}, 0 + n = n\)

Applying reflexivity yields
No more subgoals.
Summary

- `simpl` and `reflexivity` work under `forall` binders
- `simpl` only unfolds definitions of the `goal`; does not conclude a proof
- `reflexivity` concludes proofs and simplifies
Basic.v

- New syntax: `Definition` declares a non-recursive function
- New syntax: `Compute` evaluates an expression and outputs the result + type
- New syntax: `Check` prints the type of an expression
- New syntax: `Inductive` defines inductive data structures
- New syntax: `Fixpoint` declares a (possibly) recursive function
- New syntax: `match` performs pattern matching on a value
- New tactic: `simpl` evaluates functions if possible
- New tactic: `reflexivity` concludes a goal \(?X = ?X\)
Ltac vocabulary

- `simpl`
- `reflexivity`