CS420

Introduction to the Theory of Computation

Lecture 10: PDA \iff CFG

Tiago Cogumbreiro
Today we will learn...

- Exercises on designing a PDA
- Convert a PDA into a CFG
- Convert a CFG into a PDA

Section 2.2
Supplementary material: Professor David Chiang's lecture notes [1] [2]; Professor Siu On Chan slides
Exercise 1

1. aa is a palindrome
2. aba is a palindrome
3. bbb is a palindrome
4. ϵ is a palindrome
5. a is a palindrome

Give a PDA that recognizes palindromes and show it accepts aba and rejects abb
Exercise palindrome

Graph:

- Start state: q_1
- Transitions:
 - q_1: $a, \epsilon \rightarrow a$
 - q_1: $b, \epsilon \rightarrow b$
 - q_2: $\epsilon, \epsilon \rightarrow \epsilon$
 - q_2: $a, \epsilon \rightarrow \epsilon$
 - q_2: $b, \epsilon \rightarrow \epsilon$
 - q_2: $a, a \rightarrow \epsilon$
 - q_2: $b, b \rightarrow \epsilon$
 - q_2: $\epsilon, \$ \rightarrow \epsilon$
 - q_3: $\epsilon \rightarrow \epsilon$
Accepts aba
Accepts aba

[Diagram of a Deterministic Pushdown Automaton (DPDA) accepting the string aba.]
Rejects abb
Rejects abb

```
\begin{align*}
q_0 & \rightarrow a \cdot q_1 \\
q_1 & \rightarrow b \cdot q_2 \\
q_2 & \rightarrow \epsilon \\
q_2 & \rightarrow b \cdot q_2 \\
q_2 & \rightarrow \epsilon \\
q_0 & \rightarrow \epsilon \\
q_0 & \rightarrow q_3 \\
q_2 & \rightarrow \epsilon \\
q_3 & \rightarrow \epsilon
\end{align*}
```
Exercise 2

\[L_2 = \{ a^n b^{2n} \mid n \geq 0 \} \]

Give a PDA that recognizes \(L_2 \) and show it rejects \(aba \) and accepts \(abb \)
Exercise 2 solution

\[
\begin{align*}
q_1 & \xrightarrow{a, \epsilon} a \\
\epsilon, \epsilon & \xrightarrow{\epsilon} \epsilon \\
q_2 & \xrightarrow{b, \epsilon} \epsilon \\
q_3 & \xrightarrow{b, a} \epsilon \\
q_4 & \xrightarrow{\epsilon, \$} \epsilon
\end{align*}
\]
L_2 does not contain aba
L_2 does not contain aba
L_2 contains abb
L_2 contains abb
Main result

Context free languages

Theorem: Language L has a context free grammar if, and only if, L is recognized by some pushdown automaton.

Next

1. We show that from a CFG we can build an equivalent† PDA
2. We show that from a PDA we can build an equivalent† CFG

† Equivalence with respect to recognized languages. Let P be a PDA and C a CFG we say that P is equivalent to C (and vice versa) if, and only if, $L(P) = L(C')$
Converting a CFG into a PDA
Converting a CFG into a PDA

- (1) Initial state pushes S to the stack
- In a loop:
 - (2) Every rule $S \rightarrow w$ corresponds to popping S and pushing w (in reverse)
 - (3) Pop terminals from stack
 - (4) Empty stack means recognized

Example $L_3 = \{a^n b^n \mid n \geq 0\}$

$$S \rightarrow aSb \mid \epsilon$$

<table>
<thead>
<tr>
<th>PDA operation</th>
<th>Output</th>
<th>Accept?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\epsilon, S \rightarrow S$</td>
<td>S</td>
<td>aabb</td>
</tr>
<tr>
<td>$\epsilon, S \rightarrow aSb$</td>
<td>aSb$</td>
<td></td>
</tr>
<tr>
<td>$\epsilon, a \rightarrow \epsilon$</td>
<td>Sb$</td>
<td>a</td>
</tr>
<tr>
<td>$\epsilon, S \rightarrow aSb$</td>
<td>aSbb$</td>
<td>a</td>
</tr>
<tr>
<td>$\epsilon, a \rightarrow \epsilon$</td>
<td>Sbb$</td>
<td>aa</td>
</tr>
<tr>
<td>$\epsilon, S \rightarrow \epsilon$</td>
<td>bb$</td>
<td>aa</td>
</tr>
<tr>
<td>$\epsilon, b \rightarrow \epsilon$</td>
<td>b$</td>
<td>aabb</td>
</tr>
<tr>
<td>$\epsilon, b \rightarrow \epsilon$</td>
<td>ϵ</td>
<td>aabb</td>
</tr>
</tbody>
</table>
Overview

1. **Initial variable**: From the initial state q_1 push the initial variable onto the stack via ϵ and move to the loop state (q_2)

2. **Productions**: For each rule ($S \rightarrow aSb$), perform a multi-push edge via ϵ from q_2 back to q_2, by popping the variable of the rule S and performing a multi-push of the body aSb.

3. **Alphabet**: For each letter a of the grammar draw a self loop to q_2 that reads a and pops a from the stack

4. **Final transition**: Once the stack is empty transition to the final state q_3 via ϵ

Diagram:

- **Start state** q_1
- **Initial variable edge** $\epsilon, \$ \rightarrow S$
- **Rule edge** $S \rightarrow \epsilon$
- **Rule edge** $S \rightarrow aSb$
- **Alphabet edges**
 - $a, a \rightarrow \epsilon$
 - $b, b \rightarrow \epsilon$
- **Final state** q_3

aabb is in $L_3 = \{a^n b^n \mid n \geq 0\}$, show acceptance
aabb is in $L_3 = \{a^n b^n \mid n \geq 0\}$, show acceptance
1. The states q_1, q_2, and q_3 are always in the converted PDA
2. The edge between q_1 and q_2 always pushes the initial variable
3. The edge between q_2 and q_3 is always $\epsilon, S \rightarrow \epsilon$
4. There is always a self loop for each letter in the alphabet of $a, a \rightarrow \epsilon$
5. The only difficulty is **generating the substitution rules**
How to encode $S \rightarrow aSb$?

(multi push)
Encoding multi-push productions

By example $X \rightarrow aYb$

1. reverse the production, example:
 $X \rightarrow aYb$ yields bYa.

2. Create one state R_i for each variable/terminal in the reversed string, each transition pushes a variable/terminal of the reversed string.

 ![Diagram](image)

Note: In the book (and in my diagrams) I merge the first two transitions. This is equivalent to the above method; you can use either, as long as you do it correctly.
Exercise 3

Convert the following grammar into a PDA

\[A \rightarrow 0A1 \mid B \]
\[B \rightarrow 1B \mid \epsilon \]
Exercise 3

Convert the following grammar into a PDA

\[A \to 0A1 \mid B \]
\[B \to 1B \mid \epsilon \]
Converting a PDA into a CFG
Converting a PDA into a CFG

1. modify the PDA into a simplified PDA:
 - has a single accepting state
 - empties the stack before accepting
 - every transition is in one of these forms:
 - skips popping and pushes one symbol onto the stack: $\epsilon \rightarrow c$
 - pops one symbol off the stack and skips pushing: $c \rightarrow \epsilon$
Converting a PDA into a CFG

1. modify the PDA into a simplified PDA:
 - has a single accepting state
 - empties the stack before accepting
 - every transition is in one of these forms:
 - skips popping and pushes one symbol onto the stack: $\epsilon \rightarrow c$
 - pops one symbol off the stack and skips pushing: $c \rightarrow \epsilon$

2. given a simplified PDA build a CFG
 - $A_{qq} \rightarrow \epsilon$ if $q \in Q$
 - $A_{pq} \rightarrow A_{pr} A_{rq}$ if $p, q \in Q$
 - $A_{pq} \rightarrow aA_{rs}b$ if $(r, u) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, u)$
Simplifying a PDA
Simplifying a PDA

Transformation 1: Has a single accepting state

Transformation 2: Empties the stack before accepting

\[\forall a \in \Sigma \] means that there will be one edge \(a, a \to \epsilon \) per \(a \in \Sigma \)
Simplifying a PDA

Transformation 3

Every transition is in one of these forms:

- skips popping and pushes one symbol onto the stack: $\epsilon \rightarrow c$
- pops one symbol off the stack and skips pushing: $c \rightarrow \epsilon$

Case 1

Case 2
Example 4

Simplified PDA

- single accepting state
- empties the stack before accepting
- every transition is in one of these forms:
 - $\epsilon \rightarrow c$
 - $c \rightarrow \epsilon$

Is it simplified?
Example 4

Simplified PDA

- single accepting state
- empties the stack before accepting
- every transition is in one of these forms:
 - $\epsilon \rightarrow c$
 - $c \rightarrow \epsilon$

Is it simplified?

No!
Example 4

Not Simplified

Simplified
Example 4

Not Simplified

Simplified
Simplified PDA to CFG
Simplified PDA to CFG

Given a simplified PDA build a CFG

1. $A_{qq} \rightarrow \epsilon$ if $q \in Q$

2. $A_{pq} \rightarrow A_{pr} A_{rq}$ if $p, r, q \in Q$

3. $A_{pq} \rightarrow a A_{rs} b$ if $(r, u) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, u)$

for $p-[a, x \rightarrow u] \rightarrow r$ in transitions:
 # for every transition
 if x is epsilon:
 for $s-[b, _u \rightarrow x] \rightarrow q$ in transitions:
 # for every transition
 if $_u = u$ and x is epsilon:
 yield $A_{pq} \rightarrow a A_{rs} b$
Example 5

Balanced parenthesis that are wrapped inside an outermost parenthesis.

Is this PDA simplified?
Example 5

Balanced parenthesis that are wrapped inside an outermost parenthesis.

Is this PDA simplified?

Yes!
Example 5

Step 1: $A_{qq} \rightarrow \epsilon$ if $q \in Q$

Step 2: $A_{pq} \rightarrow A_{pr} A_{rq}$ if $p, r, q \in Q$

- $A_{11} \rightarrow \epsilon$
- $A_{22} \rightarrow \epsilon$
- $A_{33} \rightarrow \epsilon$
- $A_{44} \rightarrow \epsilon$
- $A_{12} \rightarrow A_{13} A_{32}$
- $A_{12} \rightarrow A_{14} A_{42}$$

- $A_{13} \rightarrow A_{12} A_{23}$
- $A_{13} \rightarrow A_{14} A_{43}$
- $A_{14} \rightarrow A_{12} A_{24}$
- $A_{14} \rightarrow A_{13} A_{34}$

- $A_{21} \rightarrow A_{23} A_{31}$
- $A_{21} \rightarrow A_{24} A_{41}$

- $A_{23} \rightarrow A_{21} A_{13}$
- $A_{23} \rightarrow A_{24} A_{43}$
- $A_{24} \rightarrow A_{21} A_{14}$
- $A_{24} \rightarrow A_{23} A_{34}$

- $A_{31} \rightarrow A_{32} A_{21}$
- $A_{31} \rightarrow A_{32} A_{23}$
- $A_{31} \rightarrow A_{32} A_{24}$
- $A_{31} \rightarrow A_{33} A_{31}$

- $A_{32} \rightarrow A_{31} A_{12}$
- $A_{32} \rightarrow A_{34} A_{42}$
- $A_{34} \rightarrow A_{31} A_{14}$
- $A_{34} \rightarrow A_{32} A_{24}$

- $A_{33} \rightarrow A_{32} A_{23}$
- $A_{33} \rightarrow A_{34} A_{43}$
- $A_{34} \rightarrow A_{32} A_{24}$
- $A_{34} \rightarrow A_{33} A_{34}$

- $A_{41} \rightarrow A_{42} A_{21}$
- $A_{41} \rightarrow A_{43} A_{31}$

- $A_{42} \rightarrow A_{41} A_{12}$
- $A_{42} \rightarrow A_{43} A_{32}$
- $A_{43} \rightarrow A_{42} A_{23}$
- $A_{43} \rightarrow A_{43} A_{33}$

- $A_{44} \rightarrow A_{43} A_{34}$
- $A_{44} \rightarrow A_{43} A_{31}$
Example 5

Step 1: \(A_{qq} \rightarrow \varepsilon \) if \(q \in Q \)

Step 2: \(A_{pq} \rightarrow A_{pr} A_{rq} \) if \(p, r, q \in Q \)

\[
\begin{align*}
A_{4,2} & \rightarrow A_{4,1}A_{1,2} \\
A_{4,2} & \rightarrow A_{4,3}A_{3,2} \\
A_{4,3} & \rightarrow A_{4,1}A_{1,3} \\
A_{4,3} & \rightarrow A_{4,2}A_{2,3}
\end{align*}
\]
Example 5

Step 3: $A_{pq} \rightarrow aA_{rs}b$ if $(r, u) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, u)$

New rules:

- $A_{1,2} \rightarrow oA_{22}c$
- $A_{1,3} \rightarrow oA_{22}c$
- $A_{2,2} \rightarrow oA_{22}c$
- $A_{2,3} \rightarrow oA_{22}c$

Intuition:

- Create a table for each letter being pushed/popped.
- Pair each push with each pop.
Exercise 6

Simplify the PDA below
Exercise 6

Solution

[Diagram of a nondeterministic finite automaton (NFA) with transitions labeled by symbols such as $a, \epsilon \rightarrow a$, $\epsilon, \epsilon \rightarrow a$, etc., leading to states $q_1, q_{1,2}, q_2, q_{1,4}, q_3, q_{3,3}, q_4, q_5, q_6, q_7$. The transitions are shown with arrows indicating movement from one state to another, with the possibility of epsilon transitions (ϵ).]