Today we will learn...

- Regular languages
- The pumping lemma
- Non-regular languages
- Proving that a language is not regular with the Pumping lemma

Section 1.4 Nonregular Languages
Today's lecture is based on the excellent Prof. Emanuele Viola's slides.
What is a regular language?
What is a regular language?

Definition 1.16

We say that L_1 is regular if there exists a DFA M such that $L(M) = L_1$.
Example 1

Let N_1 be the following NFA:

Is $L(N_1)$ regular?
Example 1

Let \mathcal{N}_1 be the following NFA:

Is $L(\mathcal{N}_1)$ regular?

Yes. **Proof:** we can convert \mathcal{N}_1 into an equivalent DFA, which then satisfies Definition 1.16.
Example 1

Let N_1 be the following NFA:

Is $L(N_1)$ regular?

Yes. Proof: we can convert N_1 into an equivalent DFA, which then satisfies Definition 1.16.

Theorem

We say that L_1 is regular, if there exits an NFA N such that $L(N) = L_1$
Example 2

Is $L(0 + 1^*)$ regular?
Example 2

Is $L(0 + 1^*)$ regular?

Yes. Proof: We have that $L(0 + 1^*) = L(NFA(0 + 1^*))$, which is regular (from the previous theorem).
Example 2

Is $L(0 + 1^*)$ regular?

Yes. Proof: We have that $L(0 + 1^*) = L(NFA(0 + 1^*))$, which is regular (from the previous theorem).

Theorem

We say that L_1 is regular, if there exits a regular expression R such that $L(R) = L_1$.
What is a regular language?

1. A language is regular if there exists a DFA that recognizes it
2. A language is regular if there exists an NFA that recognizes it
3. A language is regular if there exists a Regex that recognizes it
Example

The language of strings that have a possibly empty sequence of \(n \) zeroes followed by a sequence of \(n \) ones.

\[B = \{ 0^n 1^n \mid \forall n: n \geq 0 \} \]

Is this language regular?
Example

The language of strings that have a possibly empty sequence of n zeroes followed by a sequence of n ones.

$$B = \{0^n1^n \mid \forall n: n \geq 0\}$$

Is this language regular?

How do we prove that a language is not regular?
Example

The language of strings that have a possibly empty sequence of n zeroes followed by a sequence of n ones.

\[B = \{0^n1^n \mid \forall n: n \geq 0\} \]

Is this language regular?

How do we prove that a language is not regular?

The only way we know is by proving that there is no NFA/DFA/regex that can recognize such a language.
Pumping lemma

An intuition

The pumping lemma tells us that all regular languages (that have a loop) have the following characteristics:

Every word in a regular language, \(w \in L \), can be partitioned into three parts \(w = xyz \):

- a portion \(x \) before the first loop,
- a portion \(y \) that is one loop's iteration (nonempty), and
- a portion \(z \) that follows the first loop

Additionally, since \(y \) is a loop, then it may be omitted or replicated as many times as we want and that word will also be in the given language, that is \(xyz^i z \in L \)
You: Give me any string accepted by the automaton of at least size 3.
Pumping lemma

Pictorial intuition

You: Give me any string accepted by the automaton of at least size 3.

Example: 100
Pumping lemma

Pictorial intuition

You: Give me any string accepted by the automaton of at least size 3.
Example: 100
Me: I will partition 100 into three parts $100 = xyz$ such that xy^iz is accepted for any i:

$$\begin{align*}
xz &= 10 \cdot \epsilon = 10 \\
xyyz &= 1000000 \\
xyyzz &= 10000000
\end{align*}$$
Pumping lemma

Pictorial intuition

You: Give me a string of size 4.

Example: 1100

Me: I will partition 1100 into three parts 1100 = xyz such that xy^i z is accepted for any i:

- xz = 100 is accepted
- xyyz = 11100 is accepted
- xyyyyyz = 1111100 is accepted
- xyyyyyz = 11111100 is accepted
Pumping lemma

If A is a regular language, then there exists a *pumping length* (a number) where if $s \in A$ and $|s| \geq p$, then there exist x, y, z such that

1. $s = xyz$
2. $\forall i: i \geq 0$ we have that $xy^i z \in A$
3. $|y| > 0$
4. $|xy| \leq p$
Nonregular languages
Recall the contrapositive

If $P \implies Q$, then $\neg Q \implies \neg P$

Theorem contrapositive:

\[
\forall P, Q: \text{Prop}, (P \implies Q) \implies (\neg Q \implies \neg P).
\]

Proof.
Recall the contrapositive

If \(P \implies Q \), then \(\neg Q \implies \neg P \)

Theorem contrapositive:
forall \(P \), \(Q \): Prop, \((P \rightarrow Q) \rightarrow (\neg Q \rightarrow \neg P)\).

Proof.

intros. (* introduce assumptions. *)
unfold not. (* open the definition of not, \(P \rightarrow False \) *)
intros. (* introduce assumption \(P \) *)
apply H in H1. (* We have \(P \rightarrow Q \) and \(P \) apply the former to the latter. *)
contradiction. (* We have \(Q \) and \(\neg Q \), so we reach a contradiction. *)
Qed.

Feel free to iterate through the proof using CoqIDE:

coq.inria.fr
Pumping Lemma and not regular languages

From the Pumping lemma we have

\[A \text{ is regular} \implies \exists p, \text{Pumping}(p, A) \]

Then, by the contrapositive, we have:
Pumping Lemma and not regular languages

From the Pumping lemma we have

$$A \text{ is regular} \implies \exists p, \text{Pumping}(p, A)$$

Then, by the contrapositive, we have:

$$\neg(\exists p, \text{Pumping}(p, A)) \implies \neg A \text{ is regular}$$
Pumping Lemma and not regular languages

From the Pumping lemma we have

$$A \text{ is regular } \implies \exists p, \text{Pumping}(p, A)$$

Then, by the contrapositive, we have:

$$\neg(\exists p, \text{Pumping}(p, A)) \implies \neg A \text{ is regular}$$

Thus,

$$\forall p, \neg\text{Pumping}(p, A) \implies A \text{ is regular } \implies \bot$$
Pumping Lemma and not regular languages

From the Pumping lemma we have

$$A \text{ is regular} \implies \exists p, \text{Pumping}(p, A)$$

Then, by the contrapositive, we have:

$$\neg(\exists p, \text{Pumping}(p, A)) \implies \neg A \text{ is regular}$$

Thus,

$$\forall p, \neg \text{Pumping}(p, A) \implies A \text{ is regular} \implies \bot$$

In other words, if we have \(\neg \text{Pumping}(p, A)\) (next slide) and \(A\) is regular, then we can reach a contradiction.
Pumping Lemma and not regular languages

\(\neg \text{Pumping}(p, A) \) and \(A \) is regular \(\implies \bot \) can be written as follows:

\[
\begin{align*}
H_0 & : \forall p : p \geq 0 \\
H_1 & : \exists w : w \in A \text{ such that } |w| \geq p \\
H_2 & : \forall x, y, z : w = xyz \text{ where } |y| > 0 \text{ and } |xy| \leq p \\
H_3 & : \exists i : i \geq 0 \\
H_4 & : A \text{ is regular}
\end{align*}
\]

Goal: \(\bot \)
The pumping lemma; non-regular languages

Goal: \bot

Proof strategy

Proving that a language A is nonregular involves using the \forall and \exists quantifiers.

Proving can be seen as a game, concluding a proof means winning the game.

- The \forall quantifier is picked by your adversary
- The \exists quantifier is picked by you (the player)
Proof example (with existential)

Theorem: For any number, there exists another number that is greater than the given number.

\[H_0 : \forall a : a \geq 0 \]

Goal \(\exists b : b > a \)

- \(\forall \): Your adversary can pick any number, including the biggest number they can think of
- \(\exists \): But, because we can pick another number, by knowing what number was given we can just answer the successor

Proof. Pick \(a + 1 \).
Proof example (with existential)

Theorem: For any number, there exists a another number that is greater than the given number.

\(H_0 : \forall a : a \geq 0 \)

Goal \(\exists b : b > a \)

- \(\forall \): Your adversary can pick any number, including the biggest number they can think of
- \(\exists \): But, because we can pick another number, by knowing what number was given we can just answer the successor

Proof. Pick \(a + 1 \).
Proving that a language is not regular

1. **Adversary** picks p such that:
 \[p \geq 0 \]
2. **You** pick some w so that:
 \[w \in A \text{ and } |w| \geq p \]
3. **Adversary** decomposes w in xyz such that:
 \[|y| > 0 \text{ and } |xy| \leq p \]
4. **You** pick some i such that:
 \[i \geq 0 \]
5. **Goal:** **You** show that $xy^iz \notin A$

Tips

- **The accepted word:** usually that words has an exponent, in which case use the pumping length
- **How many times y repeats:** usually 0 or 2
\{0^n1^n \mid \forall n: n \geq 0\} \text{ is nonregular}
Proving nonregular languages

Theorem \(\{0^n 1^n \mid \forall n : n \geq 0 \} \) is not regular.

Proof idea

1. **Adversary:** picks \(p \) such that \(p \geq 0 \)
Proving nonregular languages

Theorem \(\{0^n1^n \mid \forall n : n \geq 0 \} \) is not regular.

Proof idea

1. **Adversary:** picks \(p \) such that \(p \geq 0 \)
2. **You:** Let us pick \(w = 0^p1^p \)

 \(w \in A \) and \(|w| \geq p \) (trivially holds)
Proving nonregular languages

Theorem \(\{0^n1^n \mid \forall n : n \geq 0 \} \) is not regular.

Proof idea

1. **Adversary:** picks \(p \) such that \(p \geq 0 \)
2. **You:** Let us pick \(w = 0^p1^p \)

 \(w \in A \) and \(|w| \geq p \) (trivially holds)
3. **Adversary:** decomposes \(w \) in \(xyz \) such that:

 \(|y| > 0 \) and \(|xy| \leq p \)
Proving nonregular languages

Theorem \(\{0^n 1^n \mid \forall n : n \geq 0\} \) is not regular.

Proof idea

1. **Adversary:** picks \(p \) such that \(p \geq 0 \)
2. **You:** Let us pick \(w = 0^p 1^p \)
 \[w \in A \text{ and } |w| \geq p \text{ (trivially holds)} \]
3. **Adversary:** decomposes \(w \) in \(xyz \) such that:
 \[|y| > 0 \text{ and } |xy| \leq p \]
4. **You:** Let us pick \(i = 2 \):
 \[i \geq 0 \text{ (trivially holds)} \]
Proving nonregular languages

Theorem \(\{0^n1^n \mid \forall n : n \geq 0\} \) is not regular.

Proof idea

1. **Adversary:** picks \(p \) such that \(p \geq 0 \)
2. **You:** Let us pick \(w = 0^p1^p \)
 \(w \in A \) and \(|w| \geq p \) (trivially holds)
3. **Adversary:** decomposes \(w \) in \(xyz \) such that:
 \(|y| > 0 \) and \(|xy| \leq p \)
4. **You:** Let us pick \(i = 2 \):
 \(i \geq 0 \) (trivially holds)
5. **Goal:** You: show that \(xyyz \notin A \)

Why?

- The final goal is to show that \(w \notin A \);
 thus, to show that the exponent of 1 is different than the exponent of 0.
- By picking \(p \) as the exponent, we force
 the exponent of 1 to contain at least
 \(|xy| \), meaning that \(z \) will be fixed.
- By selecting \(i = 2 \) we make the
 exponent of 1 bigger than that of 0.
Theorem \(L_1 = \{0^n1^n \mid \forall n: n \geq 0\} \) is not regular.

Proof. We prove that the language above does not satisfy the pumping property, thus the language is not regular. Let \(p \) be the pumping length.

1. We pick \(w = 0^p1^p \) and must show that
 - \(w \in \{0^n1^n \mid \forall n: n \geq 0\} \), which holds by replacing \(n \) by \(p \).
 - \(|w| \geq p \), which holds since \(|w| = 2p \geq p \).
Theorem \(L_1 = \{0^n1^n \mid \forall n: n \geq 0\} \) is not regular.

Proof. We prove that the language above does not satisfy the pumping property, thus the language is not regular. Let \(p \) be the pumping length.

1. We pick \(w = 0^p1^p \) and must show that
 - \(w \in \{0^n1^n \mid \forall n: n \geq 0\} \), which holds by replacing \(n \) by \(p \).
 - \(|w| \geq p \), which holds since \(|w| = 2p \geq p \).
2. Finally, given some \(x, y, z \) our assumptions are (H1) \(w = xyz \), (H2) \(|xy| \leq p \), and (H3) \(|y| > 0 \), we must prove that

\[\exists i, xy^iz \notin L_1 \]

(We write in red what you need to prove)
Proof. (Continuation...)
Let $a + b = p$, where $xy = 0^a$ and $a, b \in \mathbb{N}_0$ (non-negative).
We can rewrite (H1) $w = xyz$ such that

\[
(H_1) \quad w = 0^p \underbrace{1^p}_{xyz} = \underbrace{0^a}_{xy} \underbrace{0^b}_{z} \underbrace{1^{a+b}}_{z}
\]
Proof. (Continuation...) Let \(a + b = p \), where \(xy = 0^a \) and \(a, b \in \mathbb{N}_0 \) (non-negative). We can rewrite (H1) \(w = xyz \) such that

\[
(H_1) \quad w = 0^p 1^p = 0^a 0^b 1^{a+b}
\]

Or, simply,

\[
(H_1) \quad 0^a 0^b 1^{a+b} = 0^{|xy|} 0^b 1^{|xy|+b}
\]
Proof. (Continuation...) We pick \(i = 2 \), so our goal is to show that

\[
\begin{array}{c}
0^{xyy}0^b1^{xy}+b \\
xyy & z
\end{array} \notin \{0^n1^n \mid \forall n: n \geq 0\}
\]
Proof. (Continuation...) We pick $i = 2$, so our goal is to show that

$$
\underbrace{0^{\left| xyy \right|}}_{xyy} \underbrace{0^b}_{z} \underbrace{1^{\left| xy \right| + b}}_{xy} \notin \{0^n 1^n \mid \forall n: n \geq 0\}
$$

Thus, it is equivalent to show that

$$\left| xyy \right| + b \neq \left| xy \right| + b$$

We can simplify it with,
Proof. (Continuation...) We pick \(i = 2 \), so our goal is to show that

\[
0\underbrace{\{|xyy|0^b1|xy|+b\}}_{xyy} \not\in \{0^n1^n \mid \forall n: n \geq 0\}
\]

Thus, it is equivalent to show that

\[
|xyy| + b \neq |xy| + b
\]

We can simplify it with,

\[
|xyy| + b - (|xy| + b) \neq |xy| + b - (|xy| + b)
\]

And,

\[
|y| \neq 0
\]
Proof. (Continuation...) We pick $i = 2$, so our goal is to show that

$$0^{|xyy|}0^b1^{xy|+b} \not\in \{0^n1^n \mid \forall n: n \geq 0\}$$

Thus, it is equivalent to show that

$$|xyy| + b \neq |xy| + b$$

We can simplify it with,

$$|xyy| + b - (|xy| + b) \neq |xy| + b - (|xy| + b)$$

And,

$$|y| \neq 0$$

Which is trivially true since (H3) $|y| > 0$
$\{w \mid w \text{ has as many 0's as 1's}\}$ is not regular
Theorem \(\{ w \mid w \text{ has as many 0's as 1's} \} \) is not regular

Proof idea

1. **Adversary:** picks \(p \) such that \(p \geq 0 \)
Theorem \(\{ w \mid w \text{ has as many 0’s as 1’s} \} \) is not regular

Proof idea

1. **Adversary:** picks \(p \) such that \(p \geq 0 \)
2. **You:** Let us pick the same \(w \) as before
 \[0^p 1^p \in A \text{ and } |w| \geq p \text{ (trivially holds)} \]
Theorem \(\{ w \mid w \text{ has as many 0's as 1's} \} \) is not regular

Proof idea

1. **Adversary**: picks \(p \) such that \(p \geq 0 \)
2. **You**: Let us pick the same \(w \) as before
 \[0^p1^p \in A \text{ and } \mid w \mid \geq p \text{ (trivially holds)} \]
3. **Adversary**: decomposes \(w \) in \(xyz \) such that:
 \[\mid y \mid > 0 \text{ and } \mid xy \mid \leq p \]
Theorem \(\{ w \mid w \text{ has as many 0’s as 1’s} \} \) is not regular

Proof idea

1. **Adversary**: picks \(p \) such that \(p \geq 0 \)

2. **You**: Let us pick the same \(w \) as before
 \[0^p 1^p \in A \text{ and } |w| \geq p \text{ (trivially holds)} \]

3. **Adversary**: decomposes \(w \) in \(xyz \) such that:
 \[|y| > 0 \text{ and } |xy| \leq p \]

4. **You**: Let us pick \(i = 2 \):
 \[i \geq 0 \text{ (trivially holds)} \]
Theorem \(\{ w \mid w \text{ has as many } 0\text{'s as } 1\text{'s} \} \) is not regular

Proof idea

1. **Adversary:** picks \(p \) such that \(p \geq 0 \)
2. **You:** Let us pick the same \(w \) as before
 \(0^p1^p \in A \) and \(|w| \geq p \) (trivially holds)
3. **Adversary:** decomposes \(w \) in \(xyz \) such that:
 \(|y| > 0 \) and \(|xy| \leq p \)
4. **You:** Let us pick \(i = 2 \):
 \(i \geq 0 \) (trivially holds)
5. **Goal:** **You:** show that \(xy^2z \notin A \)

Why?

- We are responsible for picking \(w \), which is the hardest part of the problem.
- By picking \(0^p1^p \), we replicate the proof we did in the previous exercise!
Theorem \(L_2 = \{ w \mid w \text{ has as many 0's as 1's} \} \) is not regular

Proof. We prove that the language above does not satisfy the pumping property, thus the language is not regular. Let \(p \) be the pumping length.

1. We pick \(w = 0^p1^p \) and must show that

 a. \(w \in L_2 \), which holds since there are \(p \) 0's and \(p \) 1's.
 b. \(|w| \geq p \), which holds since \(|w| = 2p \geq p \).

2. Finally, given some \(x, y, z \) our assumptions are (H1) \(w = xyz \), (H2) \(|xy| \leq p \), and (H3) \(|y| > 0 \), we must prove that

 \[\exists i, xy^i z \notin L_2 \]

(We write in red what you need to prove)
Proof. (Continuation...) Let \(p = a + b \) and \(|xy| = a \). We pick \(i = 2 \) and show that

\[
\begin{array}{c}
0^a & 0^{|y|} & 0^b 1^{a+b} \\
xy & & y \\
& & z
\end{array}
\notin \{ w \mid \forall n: n \text{ has as many 0's as 1's} \}
Proof. (Continuation...)
Let \(p = a + b \) and \(|xy| = a \). We pick \(i = 2 \) and show that

\[
0^a 0^{|y|} 0^b 1^{a+b} \notin \{ w \mid \forall n: n \text{ has as many } 0\text{'s as } 1\text{'s} \}
\]

The goal below is equivalent:

\[
a + |y| + b \neq a + b
\]
Proof. (Continuation...) Let \(p = a + b \) and \(|xy| = a \). We pick \(i = 2 \) and show that

\[
0^a 0^{|y|} 0^b 1^{a+b} \notin \{ w \mid \forall n: n \text{ has as many } 0\text{'s as } 1\text{'s} \}
\]

The goal below is equivalent:

\[
a + |y| + b \neq a + b
\]

And can be simplified to

\[
|y| \neq 0
\]
Proof. (Continuation...)
Let \(p = a + b \) and \(|xy| = a \). We pick \(i = 2 \) and show that

\[
0^a 0^{|y|} 1^a 0^b 1^{a+b} \notin \{ w \mid \forall n: n \text{ has as many } 0\text{'s as } 1\text{'s \}
\]

The goal below is equivalent:

\[
a + |y| + b \neq a + b
\]

And can be simplified to

\[
|y| \neq 0
\]

Which is given by the hypothesis that \(|y| > 0 \).
$\{0^j 1^k \mid j > k\}$ is not regular
Theorem: $A = \{0^j1^k \mid j > k\}$ is not regular

Proof idea

1. **Adversary:** picks p such that $p \geq 0$
Theorem: $A = \{0^j1^k \mid j > k\}$ is not regular

Proof idea

1. **Adversary**: picks p such that $p \geq 0$
2. **You**: Let us pick $w = 0^{p+1}1^p$

 $0^{p+1}1^p \in A$ and $|w| \geq p$ (trivially holds)
3. **Adversary**: decomposes w in xyz such that:

 $|y| > 0$ and $|xy| \leq p$
Theorem: $A = \{0^j1^k \mid j > k\}$ is not regular

Proof idea

1. **Adversary:** picks p such that $p \geq 0$
2. **You:** Let us pick $w = 0^{p+1}1^p$

 $0^{p+1}1^p \in A$ and $|w| \geq p$ (trivially holds)

3. **Adversary:** decomposes w in xyz such that:

 $|y| > 0$ and $|xy| \leq p$

4. **You:** Let us pick $i = 0$:

 $i \geq 0$ (trivially holds)

5. **Goal:** **You:** show that $xz \notin A$

Why?

- Ultimately, our goal is to show that $w \notin A$, thus that the exponent of 1 smaller or equal than the exponent of 0.
- Since the loop always appears on the left-hand side of the string, we should pick the smallest exponent possible that uses p and still $w \in A$. Thus, we pick $0^{p+1}1^p$.
Proof. We prove that the language above does not satisfy the pumping property, thus the language is not regular. Let p be the pumping length.

1. We pick $w = 0^{p+1}1^p \in A$. Let $|xy| + b = p$. We have $|xy| \leq p$ and that $w = 0^{p+1}1^p$.
Proof. We prove that the language above does not satisfy the pumping property, thus the language is not regular. Let p be the pumping length.

1. We pick $w = 0^{p+1}1^p \in A$. Let $|xy| + b = p$. We have $|xy| \leq p$ and that $w = 0^{p+1}1^p$.
2. We pick $i = 0$ and show that

$$xz \notin \{0^j1^k \mid j > k\}$$
Proof. We prove that the language above does not satisfy the pumping property, thus the language is not regular. Let p be the pumping length.

1. We pick $w = 0^{p+1}1^p \in A$. Let $|xy| + b = p$. We have $|xy| \leq p$ and that $w = 0^{p+1}1^p$.

2. We pick $i = 0$ and show that

$$xz \notin \{0^j1^k \mid j > k\}$$

3. Thus,

$$0^{|xy| - |y| + b + 1}1^{|xy| + b} \notin \{0^j1^k \mid j > k\}$$
Proof. We prove that the language above does not satisfy the pumping property, thus the language is not regular. Let p be the pumping length.

1. We pick $w = 0^{p+1}1^p \in A$. Let $|xy| + b = p$. We have $|xy| \leq p$ and that $w = 0^{p+1}1^p$.
2. We pick $i = 0$ and show that

$$xz \notin \{0^j1^k \mid j > k\}$$

3. Thus,

$$0^{|xy|-|y|+b+1}1^{xy}+b \notin \{0^j1^k \mid j > k\}$$

4. So, we have to show that

$$|xy| - |y| + b + 1 \leq |xy| + b$$

$$|x| + 1 \leq |xy|$$

$$|y| \geq 1 \quad \text{which holds, since} \ |y| > 0$$