How do you generate $M_1 \cup M_2$?

What does this code tells us?

def union(dfa1, dfa2):
 def transition(q, a):
 return (dfa1.transition_func(q[0], a), dfa2.transition_func(q[1], a))
 def is_final(q):
 return dfa1.accepted_states(q[0]) or dfa2.accepted_states(q[1])
 return DFA(
 states = set(product(dfa1.states, dfa2.states)),
 alphabet = set(dfa1.alphabet).union(dfa2.alphabet),
 transition_func = transition,
 start_state = (dfa1.start_state, dfa2.start_state),
 accepted_states = is_final
)
Mathematically...

The union operation is defined as $\text{union}(M_1, M_2) = (Q_{1,2}, \Gamma_1, \delta_{1,2}, q_{1,2}, F_{1,2})$ where

- $M_1 = (Q_1, \Gamma_1, \delta_1, q_1, F_1)$
- $M_2 = (Q_2, \Gamma_2, \delta_2, q'_1, F_2)$
- **States:** $Q_{1,2} = Q_1 \times Q_2$
- **Alphabet:** $\Gamma_1 = \Gamma_2$
- **Transition:** $\delta_{1,2}(q, a) = (\delta_1(q_1, a), \delta_2(q_2, a))$
- **Initial:** $q_{1,2} = (q_1, q'_1)$
- **Final:** $F_{1,2} = \{q \mid q_1 \in F_1 \lor q_2 \in F_2\}$

Let notation $q_1 = x$ be defined when $q = (x, y)$. Let notation $q_2 = y$ be defined when $q = (x, y)$.
The key point is the transition function

- **Transition**: \(\delta_{1,2}(q, a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \)

How do we fill a transition table?

1. For every \(q \in Q_1 \times Q_2 \) and for every \(a \in \Gamma_1 \)
2. The cell in line \(q \) and column \(a \) becomes \((\delta_1(q_1, a), \delta_2(q_2, a)) \)

How do we draw the state diagram?

1. Start from the initial state \(q_1 \) and for each \(a \in \Sigma \) draw an edge to each state \(q_2 = \delta(q_1, a) \)
2. While there are states without outgoing edges, pick one state \(q_i \) without outgoing edges: for each \(a \in \Sigma \) draw an edge to state \(q'_i = \delta(q_i, a) \)
<table>
<thead>
<tr>
<th>I</th>
<th>O</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>(undef, undef)</td>
<td>(undef, undef)</td>
<td>(undef, undef)</td>
</tr>
<tr>
<td>(undef, init)</td>
<td>(undef, undef)</td>
<td>(undef, undef)</td>
</tr>
<tr>
<td>(H, H)</td>
<td>(HI, undef)</td>
<td>(undef, HO)</td>
</tr>
<tr>
<td>(HI, HO)</td>
<td>(undef, undef)</td>
<td>(undef, undef)</td>
</tr>
<tr>
<td>(H, HO)</td>
<td>(HI, undef)</td>
<td>(undef, undef)</td>
</tr>
<tr>
<td>(HI, H)</td>
<td>(undef, undef)</td>
<td>(undef, HO)</td>
</tr>
<tr>
<td>(init, undef)</td>
<td>(undef, undef)</td>
<td>(undef, undef)</td>
</tr>
<tr>
<td>(H, undef)</td>
<td>(HI, undef)</td>
<td>(undef, undef)</td>
</tr>
<tr>
<td>(HI, init)</td>
<td>(undef, undef)</td>
<td>(undef, undef)</td>
</tr>
<tr>
<td>(init, HO)</td>
<td>(undef, undef)</td>
<td>(undef, undef)</td>
</tr>
<tr>
<td>(undef, H)</td>
<td>(undef, undef)</td>
<td>(undef, HO)</td>
</tr>
<tr>
<td>(init, H)</td>
<td>(undef, undef)</td>
<td>(undef, HO)</td>
</tr>
<tr>
<td>(HI, undef)</td>
<td>(undef, undef)</td>
<td>(undef, undef)</td>
</tr>
<tr>
<td>(H, init)</td>
<td>(HI, undef)</td>
<td>(undef, undef)</td>
</tr>
<tr>
<td>(init, init)</td>
<td>(undef, undef)</td>
<td>(undef, undef)</td>
</tr>
<tr>
<td>(undefined, undefined)</td>
<td>(undefined, undefined)</td>
<td>(undefined, undefined)</td>
</tr>
</tbody>
</table>
Today we will learn

- Non-deterministic Finite Automatons (NFA)
- Nondeterministic transitions
- Epsilon transitions
- Formalizing acceptance
- Converting from NFA to DFA

Section 1.2
Today's lecture

- motivate, introduce NFAs informally (using state diagrams)
- define NFAs mathematically
- define NFAs algorithmically
- present the relationship between NFAs and DFAs
Exercise 1

Let $\Sigma = \{a, b\}$. Give a DFA with four states that recognizes the following language

$$\{w \mid w \text{ contains the string } aba\}$$
Let $\Sigma = \{a, b\}$. Give a DFA with four states that recognizes the following language

$$\{w \mid w \text{ contains the string } aba\}$$
Acceptance in a DFA

Acceptance is path finding

The given string must follow a path from the starting node into an accepting node.

Acceptance of \textit{abbaba}
DFA summary

- simple to analyze because each transition is deterministic
- implementing a DFA is quite trivial (because of the above)
- not very intuitive to design, because they are also limited
- each states must have a transition for all inputs (verbosity)
- using sink states to represent inputs we want to reject (verbosity)
Introducing Nondeterministic Finite Automata (NFA)
Introducing NFAs

- harder to analyze due to nondeterminism
- harder to implement (because of the above)
- may be more intuitive to design
- states may omit transitions they do not care
- sink states are unneeded
Exercise 1 with an NFA

Let $\Sigma = \{a, b\}$. Give an NFA with **four states** that recognizes the following language

$$\{w \mid w \text{ contains the string } aba\}$$

State diagram differences versus DFA?
Exercise 1 with an NFA

Let $\Sigma = \{a, b\}$. Give an NFA with four states that recognizes the following language

$$\{w \mid w \text{ contains the string } aba\}$$

State diagram differences versus DFA?

- **Nondeterminism**: q_1 may transition via a to q_1 and also to q_2

 $q_1 \xrightarrow{a} q_1$ and $q_1 \xrightarrow{a} q_2$

- **Absent transitions**: state q_2 is missing an outgoing edge labelled by a

 $q_2 \xrightarrow{b} q_3$ and $q_2 \xrightarrow{a}$
Acceptance in an NFA

Acceptance is path finding

The given string must be a path from the starting node into the accepting node.

- NFAs can have multiple possible paths because of nondeterminism, contrary to DFAs!
Acceptance in an NFA

Acceptance of \textit{abbaba}

![NFA Diagram]

- Start state: q_1
- Accepting state: q_4

States:
- q_1
- q_2
- q_3
- q_4
Acceptance in an NFA

Acceptance of $ababa$

Diagram

- **States:** q_1, q_2, q_3, q_4
- **Start State:** q_1
- **Accepting State:** q_4
- **Transitions:**
 - $q_1 \xrightarrow{a} q_2$
 - $q_2 \xrightarrow{b} q_3$
 - $q_3 \xrightarrow{a} q_4$

Notes:

- The automaton accepts the string $ababa$ by reaching the accepting state q_4.
Acceptance in an NFA

Acceptance of $a b b a b a$

Diagram:

- **States:** q_1, q_2, q_3, q_4
- **Transitions:**
 - q_1: $a \rightarrow q_1$, $ab \rightarrow q_1$
 - q_2: $a \rightarrow q_2$, $b \rightarrow q_3$
 - q_3: $a \rightarrow q_3$
 - q_4: a, b loop

- **Start State:** q_1
- **Accepting State:** q_4
Acceptance in an NFA

Acceptance of $ababa$

![Diagram of NFA accepting ababa]
Acceptance in an NFA

Acceptance of \texttt{abba}\texttt{ba}
Acceptance in an NFA

Acceptance of \textit{abbaba
Acceptance in an NFA

Acceptance of abbaba

- Diagram of an NFA
 - States: q1, q2, q3, q4
 - Transitions:
 - q1: a → q2, b → q3
 - q2: a → q3
 - q3: a → q4

- Paths for abbaba:
 - q1 → q2 → q3 → q4
 - q1 → q2 → q1 → q2 → q3 → q4
Acceptance in an NFA

- There are multiple concurrent possible paths and a current state
- Given a current state, if there are no transitions for a given input, the path ends
- Once we reach the final path, we check if the there are accepting states
Exercise 2
Exercise 2

Let $\Sigma = \{a, b\}$. Give an NFA with four states that recognizes the following language

$$\{w \mid w \text{ contains the strings } aba \text{ or } aa\}$$
Exercise 2

Let $\Sigma = \{a, b\}$. Give an NFA with **four states** that recognizes the following language

$$\{w \mid w \text{ contains the strings } aba \text{ or } aa\}$$
Exercise 2: acceptance of $aaba$
Exercise 2: acceptance of aba
Exercise 2: acceptance of $aab\text{a}$
Exercise 2: acceptance of aab
Exercise 2: acceptance of aaba
Epsilon transitions
Epsilon transitions

Exercise 2

Let $\Sigma = \{a, b\}$. Give an NFA with four states that recognizes the following language

$$\{w \mid w \text{ contains the strings } aba \text{ or } aa\}$$

Note

- NFAs can also include ϵ transitions, which may be taken without consuming an input.
Exercise 2: acceptance of $aaba$

Interleave input with ϵ.
Read a
Exercise 2: acceptance of $a\epsilon aba$

Interleave input with ϵ.

Read ϵ
Exercise 2: acceptance of $aaba$

Interleave input with ϵ.

Read a

Diagram:

- Start at q_1
- Move to q_2 on a
- Move to q_3 on ϵ, b
- Move to q_4 on a

Diagram:

- Transition from q_1 on a to q_1
- Transition from q_2 on a to q_3
- Transition from q_3 on a to q_3
Exercise 2: acceptance of $aab\epsilon a$

Interleave input with ϵ.
Read ϵ
Exercise 2: acceptance of $aab\alpha$
Exercise 2: acceptance of $aab\alpha$

Interleave input with ϵ.

Read a
Exercise 2: acceptance of $aaba\epsilon$

Interleave input with ϵ.

Read ϵ
Exercise 2: acceptance of aaba

Interleave input with ϵ.

Read ϵ
Formalizing NFA
Formalizing an NFA

I am now going to

• introduce the **NFA** definition (as a tuple)
• introduce an definition of **acceptance**
• introduce the definition of **acceptance**

The two definitions of acceptance are equivalent.
A nondeterministic finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where

1. \(Q\) is a finite set called **states**
2. \(\Sigma\) is a finite set called **alphabet**
3. \(\delta: Q \times \Sigma \epsilon \rightarrow (Q)\) is the **transition function**

\[\delta \]

4. \(q_0 \in Q\) is the **start state**
5. \(F \subseteq Q\) is the set of **accepted states**

Notes

- Function \(\epsilon\) is known as the power-set, it takes a type and yields a set of elements of that type. Intuitively, you can think of it as type \(\langle T\rangle\), ie, a set of type \(T\).
- Notation \(\Sigma \epsilon\) is an abbreviation of \(\Sigma \cup \{\epsilon\}\)
Formalizing acceptance of an NFA

Let $M = (Q, \Sigma, \delta, q_0, F)$, let the steps through relation, notation $q \rightarrow_M w$, be defined as:

Rule 1. State q steps through $[]$ if q is a final state.

Rule 2. If we can go from q to q' with y and q' steps through w, then q steps through $y :: w$.

Rule 3. If we can go from q to q' with ϵ and q' steps through w, then q also steps through w.

Acceptance. We say that M accepts w if, and only if, $q_0 \rightarrow_M w$.
Example

Let \(M = (\{q_1, q_2, q_3, q_4\}, \{a, b\}, \delta, \{q_4\}) \).

Accept \([b,a,a]\)? Proof:

\[
\begin{array}{l|l|l|l}
\hline
\delta & \epsilon \\
\hline
q_1 & \{q_1, q_2\} & \{q_1\} & 0 \\
q_2 & \emptyset & \{q_3\} & \{q_3\} \\
q_3 & \{q_4\} & \emptyset & 0 \\
q_4 & \{q_4\} & \{q_4\} & 0 \\
\hline
\end{array}
\]
Example

Let $M = (\{q_1, q_2, q_3, q_4\}, \{a, b\}, \delta, \{q_4\})$.

Accept $[b,a,a]$? Proof:

$\begin{array}{c|c|c|c}
\delta & \epsilon \\
\hline
q_1 & \{q_1, q_2\} & \{q_1\} & 0 \\
q_2 & \emptyset & \{q_3\} & \{q_3\} \\
q_3 & \{q_4\} & 0 & 0 \\
q_4 & \{q_4\} & \{q_4\} & 0 \\
\end{array}$

$\begin{array}{c}
\frac{q \in F}{M} \\
\frac{q' \in \delta(q, y)}{q} \\
\frac{q' \in \delta(q, \epsilon)}{q}
\end{array}$

$\begin{array}{c}
q_1 \in \delta(q_1, b) \\
q_2 \in \delta(q_1, a) \\
q_3 \in \delta(q_2, \epsilon) \\
q_4 \in \delta(q_3, a) \\
q_4 \in \{q_4\}
\end{array}$

$\begin{array}{c}
q_2 \in M[a] \\
q_3 \in M[a, a] \\
q_4 \in M[a, a] \\
q_1 \in M[a, a]
\end{array}$
NFA Acceptance (book version)

We say that M accepts w if there exists a sequence of states r_0, \ldots, r_m such that $w =^* y_1, \ldots, y_m, \forall y_i \in \Sigma, \forall r_i \in Q$, and:

1. $r_0 = q_0$
2. $r_{i+1} \in \delta(r_i, y_{i+1})$ for $i = 0, \ldots, m - 1$
3. $r_m \in F$

Warning: The book implicitly assumes equality up to removing ϵ. For instance, the book's definition assumes that $[b, a, \epsilon, a] = [b, a, a]$.

Example

According to the definition above M accepts $[b, a, a]$ with the sequence of states $q_1 \xrightarrow{b} q_1 \xrightarrow{a} q_2 \xrightarrow{\epsilon} q_3 \xrightarrow{a} q_4$ or just $q_1 q_1 q_2 q_3 q_4$
Implementing an NFA
Implementing an NFA

I am now going to

- implement an NFA as a Python class
- implement the acceptance algorithm
- show that we can translate a DFA into an NFA
- show that we can translate an NFA into a DFA

The implementation may serve as an intuition to understand the translation from an NFA into a DFA.
Implementing an NFA

An NFA \((Q, \Sigma, \delta, q_0, F)\) can be implemented with:

```python
class NFA:
    def __init__(self, states, alphabet, transition_func, start_state, accepted_states):
        assert start_state in states, f"%r in %r" % (start_state, states)
        self.states = states
        self.alphabet = alphabet
        self.transition_func = transition_func
        self.start_state = start_state
        self.accepted_states = accepted_states
```
Nondeterministic acceptance

Intuition

• States:
Nondeterministic acceptance

Intuition

- **States**: Each state becomes a set of all possible concurrent states of the NFA. For instance, state \(\{ q_1, q_2, q_3 \} \) says that the acceptance algorithm is concurrently on these three states.

- **Alphabet:**
Nondeterministic acceptance

Intuition

- **States**: Each state becomes a set of all possible concurrent states of the NFA
 For instance state \(\{ q_1, q_2, q_3 \} \) says that the acceptance algorithm is concurrently on these three states
- **Alphabet**: same alphabet
- **Initial state**:
Nondeterministic acceptance

Intuition

- **States:** Each state becomes a set of all possible concurrent states of the NFA. For instance, state \(\{ q_1, q_2, q_3 \} \) says that the acceptance algorithm is concurrently on these three states.
- **Alphabet:** same alphabet
- **Initial state:** The start from an initial step and perform all possible \(\epsilon \) transitions.
- **Transition:**
Nondeterministic acceptance

Intuition

- **States**: Each state becomes a set of all possible concurrent states of the NFA. For instance state \(\{q_1, q_2, q_3\} \) says that the acceptance algorithm is concurrently on these three states.
- **Alphabet**: same alphabet
- **Initial state**: The start from an initial step and perform all possible \(\epsilon \) transitions.
- **Transition**: Read one input on each "sub-state" (the input step) and then perform \(\epsilon \)-transitions (the epsilon-step).
NFA Implementation

```python
def accepts(self, inputs):
    states = self.epsilon({self.start_state})
    for i in inputs:
        if len(states) == 0:
            return False
        states = self.epsilon(self.transition(states, i))
    states = set(filter(self.accepted_states, states))
    return len(states) > 0
```

- **Input-step**: method transition performs a transition for every state (function δ_\cup)
- **Epsilon-step**: method epsilon performs all possible ϵ-transitions from a given set Q (function E)
Nondeterministic transition δ_U

$$\delta_U(R, a) = \bigcup_{q \in R} \delta(r, a)$$

```
def transition(self, states, input):
    new_states = set()
    for st in states:
        new_states.update(self.transition_func(st, input))
    return frozenset(new_states)
```

(See Theorem 1.39; in the book δ_U is δ')
Epsilon transition

\[E(R) = \{ q \mid q \text{ can be reached from } R \text{ by travelling along 0 or more } \epsilon \text{ arrows} \} \]

```python
def epsilon(self, states):
    states = set(states)
    while True:
        count = len(states)
        states.update(self.transition(states, None))
        if count == len(states):
            return states
```

(See Theorem 1.39)
Are all DFAs also NFAs?
Are all DFAs also NFAs?

- Yes, DFAs can be trivially converted into NFAs. The state diagram of a DFA is equivalent to the same state diagram as an NFA.
- We only need to slightly change the transition function to handle ϵ inputs.
Are all DFAs also NFAs?

- **Yes**, DFAs can be trivially converted into NFAs. The state diagram of a DFA is equivalent to the same state diagram as an NFA.
- We only need to slightly change the transition function to handle ϵ inputs.

Implementation

```python
def convert_to_nfa(dfa):
    return NFA(
        states=dfa.states,
        alphabet=dfa.alphabet,
        transition_func=lambda q, a: {dfa.transition_func(q, a),} if a is not None else {},
        start_state=dfa.start_state,
        accepted_states=dfa.accepted_states
    )
```
Are all NFAs also DFAs?
Are all NFAs also DFAs?

Yes!
Theorem 1.39

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
 This algorithm will be examined in Mini-Test 1.
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

Intuition

- **States:**
Theorem 1.39

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
 This algorithm will be examined in Mini-Test 1.
- Tip: understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

Intuition

- **States**: Each state becomes a set of all possible concurrent states of the NFA
- **Alphabet**:
Theorem 1.39
Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
 This algorithm will be examined in Mini-Test 1.
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

Intuition

- **States:** Each state becomes a set of all possible concurrent states of the NFA
- **Alphabet:** same alphabet
- **Initial state:**
Theorem 1.39

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
 This algorithm will be examined in Mini-Test 1.
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

Intuition

- **States:** Each state becomes a set of all possible concurrent states of the NFA
- **Alphabet:** same alphabet
- **Initial state:** The state that consists of an epsilon-step on the initial state.
- **Transition:**
Theorem 1.39

Every NFA has an equivalent DFA

- We study the algorithm that converts an NFA into a DFA
 This algorithm will be examined in Mini-Test 1.
- **Tip:** understanding the implementation of the acceptance algorithm, helps understanding the conversion and vice-versa

Intuition

- **States:** Each state becomes a set of all possible concurrent states of the NFA
- **Alphabet:** same alphabet
- **Initial state:** The state that consists of an epsilon-step on the initial state.
- **Transition:** One input-step followed by one epsilon-step
Are all NFAs also DFAs?

def nfa_to_dfa(nfa):
 def transition(q, c):
 return nfa.epsilon(nfa.transition(q, c))

 def accept_state(qs):
 for q in qs:
 if nfa.accepted_states(q):
 return True
 return False

 return DFA(
 powerset(nfa.states),
 nfa.alphabet,
 transition,
 nfa.epsilon({nfa.start_state}),
 accept_state)
Theorem 1.39

Every NFA has an equivalent DFA

Formally, we introduce function \(\text{nfa2dfa} \) that converts an NFA into a DFA.

\[
\text{nfa2dfa}((Q, \Gamma, \delta, q_1, F)) = ((Q), \Gamma, \delta_D, E(q_1), F_D)
\]

where

- \(\delta_D(Q, c) = E(\delta_U(Q, c)) \)
- \(F_D = \{ Q \mid Q \cap F \neq \emptyset \} \)
Producing a DFA from an NFA
Producing a DFA from an NFA

- The algorithm we implemented yields unreachable states
- We can eliminate such states with a standard graph operation: we obtain the strongly connected component of the initial state: the subgraph that consists of every reachable state from the initial state.
Example