Introduction to the Theory of Computation

Lecture 1: Introduction; finite automata

Tiago Cogumbreiro
About the course

- **Instructor:** Tiago (蒂亚戈) Cogumbreiro
- **Classes:** Tuesday & Thursday
 5:30pm to 6:45pm at W-02-0158, Wheatley
- **Office hours:** Tuesday & Thursday
 3:30pm to 5:00pm at S-3-183, Science Center
Course homepage
cogumbeiro.github.io/teaching/cs420/f19/

(At the bottom right of my homepage.)

- **Forum & announcements:** piazza.com/umb/fall2019/cs420/home
- **Attendance tracking:** www.estalee.com
 Course code: ZS40HJD
- **Homework assignment:** https://tinyurl.com/yy4f9n4d (Blackboard)
- **Syllabus, Slides, Video recordings**
Course grading

- Course is divided into 3 modules (8 lessons)
- Each module is evaluated with a mini-test (32%)
- Mini-tests evaluate a single module
- Each module has a recap lesson
- Attendance and participation counts (4%)

 Tracking starts Tuesday, Sept 10

- Weekly homeworks
 (ungraded; may be used as extra credit when between grades; see syllabus)
A birdseye view of CS420
What are the limits of programs?
Limits of computation

- Different classes of machines
- The limits of each of these classes
- What properties each class enjoys
Limits of computation

- Different classes of machines
- The limits of each of these classes
- What properties each class enjoys

Classes of machines

<table>
<thead>
<tr>
<th>Machine Type</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite Automata</td>
<td>Parse regular expressions</td>
</tr>
<tr>
<td>Pushdown Automata</td>
<td>Parse structured data (programs)</td>
</tr>
<tr>
<td>Turing Machines</td>
<td>Any program</td>
</tr>
</tbody>
</table>
Some of what we will learn

- Can we write a program that checks if two regex are equivalent?
Some of what we will learn

- Can we write a program that checks if two regex are equivalent?
- Are two grammars equal?
Some of what we will learn

- Can we write a program that checks if two regex are equivalent?
- Are two grammars equal?
- We need to parse some data; do we need a regex or a grammar?
Some of what we will learn

- Can we write a program that checks if two regex are equivalent?
- Are two grammars equal?
- We need to parse some data; do we need a regex or a grammar?
- Can we know if a program terminates without running it?
Some of what we will learn

- Can we write a program that checks if two regex are equivalent?
- Are two grammars equal?
- We need to parse some data; do we need a regex or a grammar?
- Can we know if a program terminates without running it?
- Are two machines/programs equal?
Some of what we will learn

- Can we write a program that checks if two regex are equivalent?
- Are two grammars equal?
- We need to parse some data; do we need a regex or a grammar?
- Can we know if a program terminates without running it?
- Are two machines/programs equal?
- Can a given algorithm give an answer for all inputs?
Techniques

- **State-machines**
 Structure concurrency/parallelism/User Interfaces; UML diagrams
Techniques

- **State-machines**
 Structure concurrency/parallelism/User Interfaces; UML diagrams

- **Regular expressions** (regex)
 String matching rules
Techniques

- **State-machines**
 Structure concurrency/parallelism/User Interfaces; UML diagrams

- **Regular expressions** (regex)
 String matching rules

- **Grammars**
 Data specification; Parsing data
Techniques

- **State-machines**
 Structure concurrency/parallelism/User Interfaces; UML diagrams

- **Regular expressions** *(regex)*
 String matching rules

- **Grammars**
 Data specification; Parsing data

- **Turing machines**
 Theory of computation
Techniques

- **State-machines**
 Structure concurrency/parallelism/User Interfaces; UML diagrams

- **Regular expressions** *(regex)*
 String matching rules

- **Grammars**
 Data specification; Parsing data

- **Turing machines**
 Theory of computation

- **Proofs by contradiction**
 Formal proofs
CS420

- Study **algorithms** and **abstractions**
- Theoretical study of the **boundaries of computing**
Finite state automata
Today we will learn...

- Finite automata theory
- State diagram
- Implementation of a finite automaton
- Formal definition of a finite automaton
- Language of a finite automaton

Section 1.1
Decision problem

- We will study **Decision Problems**: yes/no answer
- The set of inputs the problems answers yes are called the **formal language**
Finite Automata

a.k.a. finite state machine
A turnstile controller

Allows one-directional passage. Opens when the front sensor is triggered. It should remain open while any sensor is triggered, and then close once neither is triggered.

- **States**: open, close
- **Inputs**: front, rear, both, neither
State Diagram

Each state must have exactly one transition per element of the alphabet (all states must have same transition count)

Definition

- Graph-based diagram
- **Nodes**: called states; annotated with a name (Distinct names!)
- **Edges**: called transitions; annotated with inputs
- Initial state has an incoming edge (only one)
- Accepted nodes have a double circle (zero or more)
- Multiple inputs are comma separated

In the example: Two states: open, close. State close is an *accepting* state. State close is also the *initial* state
State Diagram: example 1

Input: [Front, Neither]
State Diagram: example 1

Input: [Front, Neither]
State Diagram: example 1

Input: [Front, Neither]
State Diagram: example 2

Input: [Rear, Front, Rear, Neither, Rear]
State Diagram: example 2

Input: [Rear, Front, Rear, Neither, Rear]
State Diagram: example 2

Input: [Rear, Front, Rear, Neither, Rear]

CS420 Introduction; finite automata Lecture 1 Tiago Cogumbleiro
State Diagram: example 2

Input: [Rear, Front, Rear, Neither, Rear]
State Diagram: example 2

Input: [Rear, Front, Rear, Neither, Rear]
State Diagram: example 2

Input: [Rear, Front, Rear, Neither, Rear]
The controller of a turnstile

State transition

<table>
<thead>
<tr>
<th>close</th>
<th>open</th>
<th>close</th>
<th>close</th>
<th>close</th>
<th>close</th>
</tr>
</thead>
<tbody>
<tr>
<td>open</td>
<td>open</td>
<td>open</td>
<td>open</td>
<td>open</td>
<td>close</td>
</tr>
</tbody>
</table>

```python
from enum import *

class State(Enum): Open = 0; Close = 1

class Input(Enum): Neither = 0; Front = 1; Rear = 2; Both = 3

def state_transition(old_st, i):
    if old_st == State.Close and i == Input.Front: return State.Open
    if old_st == State.Open and i == Input.Neither: return State.Close
    return old_st
```
An automaton

An automaton receives a sequence of inputs, processes them, and outputs whether it accepts the sequence.

- **Input**: a string of inputs, and an initial state
- **Output**: accept or reject

Implementation example

```python
def automaton_accepts(inputs):
    st = State.Close
    for i in inputs:
        st = state_transition(st, i)
    return st is State.Close
```

CS420 \ Introduction; finite automata \ Lecture 1 \ Tiago Cogumbreiro
An automaton acceptance examples

```python
>>> automaton_accepts([])
True
>>> automaton_accepts([Input.Front, Input.Neither])
True
>>> automaton_accepts([Input.Rear, Input.Front, Input.Front])
False
True
```
class FiniteAutomaton:
 def __init__(self, states, alphabet, transition_func, start_state, accepted_states):
 assert start_state in states
 assert all(x in states for x in accepted_states)
 self.states = states
 self.alphabet = alphabet
 self.transition_func = transition_func
 self.start_state = start_state
 self.accepted_states = accepted_states

 def accepts(self, inputs):
 st = self.start_state
 for i in inputs:
 assert i in self.alphabet
 st = self.transition_func(st, i)
 assert st in self.states
 return st in self.accepted_states # We accept now multiple states
Finite automaton library example

```python
>>> a = FiniteAutomaton(State, Input, state_transition, State.Close, [State.Close])
>>> a.accepts([])
True
>>> a.accepts([Input.Front, Input.Neither])
True
>>> a.accepts([Input.Rear, Input.Front, Input.Front])
False
True
```
Strings
Alphabet

Let Σ represent a finite set of some elements.

Examples

- bits: $\Sigma = \{0, 1\}$
- vowels: $\Sigma = \{a, e, i, o, u\}$ or, perhaps $\Sigma = \{a, e, i, o, u, y\}$
String

A string (also known as a word) over an alphabet Σ is a finite and possibly empty sequence of elements of Σ.

Examples

- $[], [0, 0], [0, 1, 0, 0]$ are strings of $\Sigma = \{0, 1\}$
- $[a, a, e], [a, e, i], [u, a, i, e, e, e, e]$ are all strings of $\Sigma = \{a, e, i, o, u\}$
String type

We use Σ^* to denote the type of a string, whose elements are strings over alphabet Σ.

Examples

Let $\Sigma = \{0, 1\}$.

- $[] \in \Sigma^*$
- $[0, 0] \in \Sigma^*$
- $[0, 1, 0, 0] \in \Sigma^*$

Notes

- The string type is a parametric type. The type of strings is parametric on the type of the alphabet, much like a list is parametric on the type of its contents. Unlike programmers, mathematicians favour short notations over more verbose names, so Σ^* is preferred over `String(\langle\Sigma\rangle)`.
- In this course we use the word type and set as synonyms.
Formally defining a string

Defining a string

\[w ::= \epsilon \mid c::w \]

- The empty string \(\epsilon \), also represented as \(\epsilon \)
- Adding one element \(c \) to a string \(w \) written as \(c::w \)

We will learn that \(w ::= \epsilon \mid c::w \) is known as grammar.
Formally defining a string

We use the following notation to represent a string

$$\left[c_1, c_2, \ldots, c_n \right] \equiv c_1 :: c_2 :: \cdots :: c_n :: []$$

We may also omit the brackets and commas when there is no ambiguity

$$\left[c_1, c_2, c_3 \right] = c_1 c_2 c_3$$
Operations on strings

Length

\[|\epsilon| = 0 \]
\[|c :: w| = 1 + |w| \]

We are defining the length function by branches. Each branch depends on the pattern of the argument.

Example

Show that \(|[1, 2]| = 2.\)

Proof. The proof follows by applying the definition of the length function.

\[|1 :: 2 :: []| = 1 + |2 :: []| = 1 + 1 + |[]| = 1 + 1 + 0 = 2 \]

□
Operations on strings

Concatenation

Attaches two strings together in a new string.

\[\varepsilon \cdot w = w \]
\[c_1 \cdot w_1 \cdot w_2 = c_1 \cdot (w_1 \cdot w_2) \]

- Formalization of the usual intuition of string concatenation.

Example

\[aba \cdot ca = a \cdot ba \cdot ca = a \cdot (ba \cdot ca) = a \cdot b \cdot (a \cdot ca) = a \cdot b \cdot a \cdot (\varepsilon \cdot ca) = abaca \]
Exponent

The exponent concatenates n copies of the same string.

$$w^0 = []$$

$$w^{n+1} = w \cdot w^n$$

Example

$$ab^3 = ababab$$

$$ab^1 = ab$$

$$ab^0 = [] = \epsilon$$
Prefix

Defining predicates by cases.

\[\epsilon \text{ prefix } w \quad w_1 \text{ prefix } w_2 \]

How do we read this?

The notation \(\frac{P}{Q} \) means if \(P \) happens, then we can conclude \(Q \).

```python
def prefix(p, w):
    if len(p) == 0: return True  # Rule 1
    if len(p) < len(w): return False
    return p[0] == w[0] and prefix(p[1:], w[1:])  # Rule 2
```
Languages
Language

A language L is a set of strings of type Σ^*, formally $L \subseteq \Sigma^*$.

Examples

- $\{\epsilon\}$ is a language that only contains the empty string
- $\{[c]\}$ is a language that only contains a string with a single character c
- $\{[1, 1, 1]\}$ is a language that only contains string $[1, 1, 1]$
- $\{w \mid w \in \Sigma^* \wedge \text{ends with } 1\}$ is a language whose strings' last character is 1
- $\{w \mid w \in \Sigma^* \wedge |w| \text{ is even}\}$ is a language whose strings' sizes are even numbers
Operations on languages

- Union: $L \cup M = \{w \mid w \in L \lor w \in M\}$
- Intersection: $L \cap M = \{w \mid w \in L \land w \in M\}$
- Subtraction: $L - M = \{w \mid w \in L \land w \notin M\}$.

 In the book, $L - M = L \setminus M$. Note that $L - M = L \cap \overline{M}$

- Complementation: $\overline{L} = \{w \mid w \notin L\} = \Sigma^* - L$