
Types for X10 Clocks
Francisco Martins

LaSIGE & University of Lisbon, Portugal
fmartins@di.fc.ul.pt

Vasco T. Vasconcelos
LaSIGE & University of Lisbon, Portugal

vv@di.fc.ul.pt

Tiago Cogumbreiro
LaSIGE & University of Lisbon, Portugal

cogumbreiro@di.fc.ul.pt

Abstract
X10 is a modern language built from the ground up to handle future parallel systems, from

multicore machines to cluster configurations. We take a closer look at a pair of synchronisation
mechanism: finish waits for the termination of parallel computations, and clocks allow multiple con-
current activities to wait for each other at certain points in time. In order to better understand these
concepts we study a type system for a stripped down version of X10. The main result is a safety
property for typable programs. The study will open, we hope, doors to a more flexible utilisation of
the clocks constructs in the X10 language.

1 Introduction

New high-level concurrency primitives are needed more than ever, now that multicore machines lay on
our desks and laps. One such primitive is clocks, a generalization of barriers introduced in the X10
programming language [1]. Clocks allow multiple concurrent activities to synchronise on a sequence of
points in time. Another primitive is finish that causes an activity to block (i.e., to suspend its execution)
until all its sub-activities have completed.

Even though the language specification [4] provides a clear, plain English, description of the intended
semantics (and properties) of the language, and a formalisation of the semantics [5] allows to prove a
deadlock freedom theorem, we decided to investigate a simpler setting in which similar results could be
obtained. The aim is not only to obtain a progress property for typable programs based on a simple type
system, but also to hopefully provide for clock-safe extensions of the X10 language itself.

Towards this end, we have stripped X10 from most of its features, ending up with a simple concurrent
language equipped with finish and the full functionality of X10 clocks, which we call “X10 restricted to
clocks,” X10 |clocks for short. For this language we have devised a simple operational semantics with
thread (or activity as called in X10) local and global views of (heap allocated) clocks. We have also
crafted a simple type system, based on singleton types, drawing expertise from previous work on low-
level programming languages [8]. Typable programs are exempt from clock related errors, as reported in
the specification of the language [4]. We conjecture that typable programs enjoy a progress property.

There seems to be no formal account of clocks in the X10 language available on the literature.
Saraswat and Jagadeesan study a bisimulation for X10 allowing to establish that programs do not dead-
lock, under certain conditions [5]. Lee and Palsberg present a core language for X10 (no clocks) suited
for inter-procedural analysis through type inference [3].

In summary, the contributions of this work are a) a simple operational semantics for activities, finish,
and clocks that allows to better understand these constructs, b) a simple type systems allowing to prove
safety and progress properties (alternative to the constraint-based system [5]), and c) the promise of a
more flexible utilization of the clock constructs. The rest of this paper presents the syntax in Section 2,
the (operational) semantics and the notion of run-time errors in Section 3, the type system, examples, and
main result in Section 4. We conclude, in Section 6, discussing an alternative model for the semantics
and pointing directions for future work.

1

fmartins@di.fc.ul.pt
vv@di.fc.ul.pt
cogumbreiro@di.fc.ul.pt

X10 clocks Martins, Vasconcelos, and Cogumbreiro

e ::= Expressions

v value

| async~v e fork activity

| make new clock

| drop v deregister from v

| finish e wait to terminate

| next advance phase

| resume v ready to advance on v

| let x = e in e local declaration

v ::= Values

x variable

| () unit

Figure 1: Top-level syntax of X10 |clocks

2 Syntax

Object-oriented and type-safe, X10 boasts support for concurrency, parallelism, and distribution. Of
particular interest to us is the synchronisation mechanism finish that waits for the termination of parallel
computations and the clock primitive that allows for forcing multiple concurrent activities to wait for
each other at certain points in time.

The top-level, or programmer’s, language we address, X10|clocks (X10 restricted to clocks and finish),
is a subset of the X10 language, generated by the grammar in Figure 1, and relies on a base set of vari-
ables ranged over by x. An X10|clocks program is an expression e that can operate on activities, clocks, or
primitive values (of type unit). To construct a program we compose expressions through the standard let
construct let x = e in e′, which binds variable x to the result of expression e in the scope of expression e′.

Below we present an example program with the purpose of illustrating the syntax and informally
presenting the semantics of the language. The example is composed of three activity: an outermost
activity a1, defined from line 2 to line 16, an inner activity a2, spawned at line 4, and another inner
activity a3, spawned at line 6 and lasting until line 12. Along the example we make use of the derived
expression e1;e2 that abbreviates let x = e1 in e2, where x not free in e2.

1 // a1
2 finish
3 let x = make in (
4 finish async e0 ; // a2
5 // a3
6 async x (
7 e1 ;
8 resume x;
9 e2 ;

10 next;
11 e3 ;
12 drop x);
13 e4 ;
14 next;
15 e5 ;
16 drop x)

2

X10 clocks Martins, Vasconcelos, and Cogumbreiro

Activities can be registered with zero or more clocks and may share clocks with other activities. A
clock can thus count with zero or more different registered activities, which are also called participants.
When an activity a is registered with clock x, we say that x is a clock held by a. Activities may only
register themselves with clocks via two different means: when they explicitly create a clock (line 3,
make, creates a clock and registers activity a1 with the clock), and when they inherit clocks from its
parent activity in a spawning operation (line 6 spawns activity a3 and registers it with the clock associated
with variable x). Expression drop deregisters an activity from a clock (line 12, drop x deregisters activity
a3 from clock x, whereas line 16 deregisters activity a1 from x). Activities are disallowed to manipulate
clocks they are not registered with.

In X10 |clocks, an activity synchronises via two different methods: by waiting for every activity
spawned by expression e to terminate (line 4 only terminates when activity a2 and all its sub-activities
terminate), and by waiting for its held clocks to advance a phase (activity a3 waits at line 10, whereas
activity a1 waits at line 14). X10 distinguishes between local and global termination of an expression.
Local termination of an expression corresponds to concluding its evaluation (reducing to a value v). An
expression terminates globally when it terminates locally and each activity spawned by the expression has
also terminated globally. Expression finish e converts the global termination of expression e into a local
termination (line 2 waits for the expression in lines 3–16 to terminate, meaning that it waits as well for
the termination of activities a2 and a3; line 4 waits for activity a2 (the result of the evaluation of async e0)
to terminate before launching the sub-activity a3, in line 6). The second method to synchronise activities
is using clocks. Groups of activities, defined by the participants of a clock, evaluate concurrently until
they reach the end of a phase. When every participant of the group reaches the end of the phase, then
all move to the next phase, while still executing concurrently. Phases are delimited by expression next;
activities evaluate this expression to mark the end of a phase (activities a1 and a3 synchronise at lines 10
and 14).

An activity can inform all other participants of a clock x that it has completed its phase by using an
expression of the form resume x, thus making clocks act as fuzzy barriers [2] (line 8). Expression resume
can be viewed as an optimisation to diminish contention upon advancing a phase: it allows activities
blocked on next to cease waiting for such activities (which can become at most one phase behind the
clock’s phase). In the example, expression e2 might execute at the same time as expression e5, since
activity a3 may trigger (at line 6) activity a1 to advance clock x (blocked at line 12), thus evaluating
expressions e2 and e5 in parallel. If we omit expression resume x from this example, then expressions e2
and e5 cannot evaluate in parallel.

Clocks can be thought of as data structures holding (among other information) a natural number
representing its global phase, initially set to zero. Advancing a clock’s phase amounts to incrementing
its global phase when every registered activity has quiesced; an activity is quiescent on a clock x after
performing a resume x. An activity resumes all its held clocks together by evaluating next and suspends
itself until these clocks become ready to advance to the next phase.

3 Operational Semantics

Figure 2 depicts the run-time syntax of our language. The run-time system relies on one additional set,
clocks names (also used for heap addresses), ranged over by c. A state S of an X10 |clocks computation
comprises a shared heap H and a set of named activities A that run concurrently. Activity names, l, are
taken from the set of variables introduced in Section 2. The heap stores clock values h, triples comprising
a natural number i representing its global phase, a set R with the registered activities, and another set Q
with the quiesced activities. These sets keep track of the activities that synchronise in the clock (R) and
the activities that are ready to advance the clock to the next phase (Q). Set difference R \Q identifies

3

X10 clocks Martins, Vasconcelos, and Cogumbreiro

V ::= {c1 : i1, . . . ,cn : in} Clocks’ local view

a ::= (V,e,A) Activity

A ::= {l1 : a1, . . . , ln : an} Sets of named activities

R,Q ::= {l1, . . . , ln} Sets of activity names

h ::= 〈i,R,Q〉 Clock values

H ::= {c1 : h1, . . . ,cn : hn} Heaps

S ::= H;A States

e ::= . . . Expressions

| join l join activities

v ::= . . . Values

| c clock

Figure 2: Run-time syntax of X10 |clocks

the activities yet to make progress on a clock; the clock phase only advances when all activities have
quiesced (when R = Q). The set of registered activities R also allows to enforce that an activity is only
able to operate on registered clocks.

An activity a is composed of a set of clocks’ local view V , an expression e under execution, and a set
of sub-activities A. Each activity has its own perception of the global phase of a clock; the clocks local
view V is a map from clock names to natural numbers describing the local phase. The global phase of a
clock and its activity local view may diverge in case an activity issues a resume on the clock and this is
enough to trigger other participants to advanced the clock’s phase. Only when the activity issues a next,
the local view of the clock and the global phase become in sync. At anytime, clock’s local view is at
most one phase behind the global phase. Notice that an activity is itself a tree of activities, since each
activity holds a set of (named) sub-activities. When evaluating an expression finish e, the activity starts
sub-activities for evaluating expression e and all activities spawned by e. Otherwise, activities have no
sub-activities.

We augment the syntax of expressions at run-time with join l. Expression join l results from eval-
uating finish e; label l identifies the activity that executes the body e of the finish expression and that
produces the resulting value of the finish e expression.

We present the small step reduction rules for X10 |clocks in Figures 3 and 4. Reduction for activities
(Figure 3), H;a→l H ′;A;a′, operates on a heap H and an activity a, and produces a possible different
heap H ′, a set A of activities spawned during the evaluation of the expression in a, and a new activity a′.

Rule R-ASYNC is the only rule that affects the set of spawned activities A. The programmer specifies
a list of clocks~c on which the new activity is to be registered with. The newly created activity (named l′),
is added to the set R of activities registered with clocks~c, and stored in the heap. The result of spawning
an activity is the unit value (). The created activity is composed of a clock view holding, for each clock c
in ~c, a copy of the global phase p, an expression e to be evaluated, and an empty set of sub-activities.
The new activity inherits each clock c quiescence property, i.e., if l is quiescent on clock c so is l′

(Q′ = if l ∈ Q then Q∪{l′} else Q).
Expression make creates a new clock in the heap with initial phase 0, with l as the only registered

activity, and with no resumed activities, 〈0,{l}, /0〉. The activity creating the clock maintains a local
clock view {c : 0} stored in V . Rule R-RESUME asserts that when the l-th activity issues a resume c,
its label is recorded in the set of resumed activities R if the clock local phase is in sync with the clock
global phase (p = V (c)); otherwise, the effect of the expression is discarded (p 6= V (c)), since the clock
has already advance to the next phase. An activity may only perform a resume operation per clock
phase (l /∈ Q).

Expression next blocks the activity until all clocks have been resumed (C1) or have already advance
their phases (C2) (rule R-NEXT). Notice that when activities are waiting on a clock c, the clock can be
in one of three states: (a) there are non-quiescent activities on the clock and c is neither a member of

4

X10 clocks Martins, Vasconcelos, and Cogumbreiro

{~c} ⊆ domV l′ is fresh Q′ , if l ∈ Q then Q∪{l′} else Q
H{c : 〈p,R,Q〉}c in~c;(V,async~c e,A)→l H{c : 〈p,R∪{l′},Q′〉}c in~c;{l′ : ({c : p}c in~c,e, /0)};(V,(),A′)

(R-ASYNC)
c is fresh

H;(V,make,A′)→l H{c : 〈0,{l}, /0〉}; /0;(V{c : 0},c,A′)
(R-MAKE)

Q′ , if p = V (c) then Q∪{l} else Q l /∈ Q
H{c : 〈p,R,Q〉};(V,resume c,A)→l H{c : 〈p,R,Q′〉}; /0;(V,(),A)

(R-RESUME)

C1 , {c |V (c) = p,H(c) = 〈p,R,R〉}
C2 , {c |V (c) = p,H(c) = 〈p+1, , 〉} C1∪C2 = domV

H;(V,next,A)→l H{c : 〈p+1,R, /0〉}c∈C1 ; /0;({c : V (c)+1}c∈V ,(),A)
(R-NEXT)

c ∈ domV H ′ , if R = {l} then H \{c} else H{c : 〈p,R\{l},Q\{l}〉}
H{c : 〈p,R,Q〉};(V,drop c,A)→l H ′; /0;(V \{c},(),A)

(R-DROP)

l0 is fresh
H;(V, finish e,A)→l H; /0;(V, join l0,A{l0 : (V,e, /0)})

(R-FINISH)

H;(V, join l0,{l0 : (/0,v0, /0), . . . , ln : (/0,vn, /0)})→l H; /0;(/0,v0, /0) (R-JOIN)

Figure 3: Reduction rules for activities H;a→l H;A;a

H;A{l : (V, let x = v in e,A′)}→ H;A{l : (V,e[v/x],A′)} (R-LET-VAL)
l ∈ domH H;(V,e,A)→l H ′;A′′′;(V ′,e′,A′)

H;A′′{l : (V, let x = e in e′′,A)}→ H ′;A′′{l : (V ′, let x = e′ in e′′,A′)},A′′′
(R-LET)

H;A′→ H ′;A′′

H;A{l : (V,e,A′)}→ H ′;A{l : (V,e,A′′)}
(R-ACTIVITY)

Figure 4: Reduction rules for states H;A→ H;A

C1 nor of C2; (b) all registered activities are quiescent on the clock, and so c is a member of C1; (c)
the clock has advanced to the next phase thus becoming a member of C2. When an activity advances a
clock global phase, it stops being a member of set C1 and becomes a member of set C2 for the remaining
activities waiting on that clock. Since rule R-NEXT only updates the clock phase of those belonging
to C1 (H{c : 〈p+1,R, /0〉}c∈C1) it ensures that the global clock state is updated only once. With ex-
pression drop c, the l-th activity cedes its control over clock c: we remove c from clock view V , and
remove activity identifier l from both sets R and Q. Two consequences of dropping a clock c are: a)
activities waiting on clock c are no longer blocked because of this activity; b) when executing a next
expression, this activity no longer waits for clock c. In case l is the only activity registered with clock
c, it is safe to garbage collect the clock. Expression finish e creates a child activity and evaluates into
expression join l0 (rule R-FINISH), which in turn blocks while there exists sub-activities running. When
all sub-activities have reduced to a value, activity l (join l0) evaluates into the value in its sub-activity l0
and garbage collects all other sub-activities (rule R-JOIN).

The reduction for states (Figure 4), S→ S′, allows for non-deterministic choice of which activity l
to evaluate (rule R-ACTIVITY), capturing the concurrency present in X10 computations. We evaluate

5

X10 clocks Martins, Vasconcelos, and Cogumbreiro

the let binding from left-to-right (rule R-LET), when the left-hand-side expression becomes a value, we
substitute this value for variable x in the continuation expression e (rule R-LET-VAL).

Recall the example from Section 2. Consider some loading function that sets up the initial state from
a given expression, which in this case is an empty heap and an activity evaluating the code in the example
under a dummy let .

S0 = /0;{l1 : (0, let z = finish let x = make in (finish (async e0);e6)︸ ︷︷ ︸
Example from Section 2

in (), /0)}

where e6 is (async x (e1;resume x;e2;next;e3;drop x));e4;next;e5;drop x. We perform two reduction
steps to illustrate the effect of expression finish on the sub-activities of l1, corresponding to the main
activity.

/0;{l1 : (/0, let z = finish let x = make in (finish (async e0);e6) in z, /0)}
(R-FINISH,R-LET)→ /0;{l1 : (/0, let z = join l2 in (),

{l2 : (/0, let x = make in (finish (async e0);e6), /0)})}

From this state on, while join remains blocked, we apply rule R-ACTIVITY to evaluate the child
activities of l1. We perform three more reduction steps and observe how expression make updates the
heap and the clock view of activity l2.

/0;{l1 : (/0, let z = join l2 in (),
{l2 : (/0, let x = make in (finish (async e0);e6), /0)})}

(R-ACTIVITY,R-LET,R-MAKE)→{c : 〈0,{l2}, /0〉};
{l1 : (/0, join l2,

{l2 : ({c : 0}, let x = c in (finish (async e0);e6), /0)})}

The non-determinism of our semantics allows for various different reductions. A possible reduction
composed of a heap and the sub-activities of activity l1 is

?→{c : 〈0,{l2, l3}, /0〉};
{l1 : (/0, join l2,{l2 : ({c : 0},(next;e5;drop c), /0),

l3 : ({c : 0},(resume c;e2;next;e3;drop c), /0)})}

We now illustrate the case when activities l2 and l3 are evaluating expressions e2 and e5 concurrently.

(R-NEXT,R-LET)→{c : 〈0,{l2, l3},{l2}〉};
{l1 : (/0, join l2,{l2 : ({c : 0},(next;e5;drop c), /0),

l3 : ({c : 0},(resume c;e2;next;e3;drop c), /0)})}
(R-RESUME,R-LET-VAL)→{c : 〈0,{l2, l3},{l2, l3}〉};

{l1 : (/0, join l2,{l2 : ({c : 0},(next;e5;drop c), /0),
l3 : ({c : 0},(e2;next;e3;drop c), /0)})}

(R-NEXT,R-LET,R-LET-VAL)→{c : 〈1,{l2, l3}, /0〉};
{l1 : (/0, join l2,{l2 : ({c : 1},(e5;drop c), /0),

l3 : ({c : 0},(e2;next;e3;drop c), /0)})}

6

X10 clocks Martins, Vasconcelos, and Cogumbreiro

H;A{l : (V, let x = async~c e in e′,A′)} ∈ Error if c 6⊆ domH or c 6∈ domV

(E-ASYNC)

H{c : 〈 , ,Q〉};A{l : (V, let x = resume c in e,A′)} ∈ Error if l ∈ Q or c 6∈ domH or c 6∈ domV
(E-RESUME)

H;A{l : (V, let x = drop c in e,A′)} ∈ Error if c 6∈ domH or c 6∈ domV (E-DROP)

H;A{l : (V, let x = next in e,A′)} ∈ Error if V (c) = p,H(c) = (p, ,Q), and

l 6∈ Q, for some c (E-NEXT)

H;A{l : (V,v,)} ∈ Error if V 6= /0 (E-ACT)
H;A′ ∈ Error

H;A{l : (, ,A′)} ∈ Error
(E-ACT-SET)

Figure 5: Run-time errors

τ ::= unit | clock(α) Types

Figure 6: Syntax of types

After activity l3 evaluates resume c, activity l2, which is blocked evaluating next, progresses, thus
allowing expressions e2 and e5 to execute in parallel. Notice that activity l2 remains in phase 0, while
activity l3 is in phase 1.

Run-time errors is the smallest set∈Error of states generated by the rules in Figure 5 and is consistent
with all the conditions documented to raise exception ClockUseException, as discussed in the X10
language specification report [4]. The type system we present in Section 4 allow us to reject, at compile
time, programs that could throw a ClockUseException; we assert that well typed programs manipulate
solely registered clocks.

During an async operation, an activity cannot transmit unregistered clocks through its first argument
(rule E-ASYNC). Similarly, activities can only perform resume or drop operations on clocks they are
registered with (rules E-RESUME and E-DROP). In particular, it constitutes an error for an activity to drop
a clock twice, or to resume a clock more than once (for the same phase) or after dropping it. We achieved
a fine grained control over the clocks an activity is registered with. Specifically, we are able to devise, at
compile time, whether an activity resumed or dropped all of its held clocks. Therefore, it constitutes an
error when an activity evaluates a next expression before resuming all its clocks (rule E-NEXT), as well
as when an activity evaluates to a value without dropping all its clocks (rule E-ACT). Rule E-ACT-SET

allows error propagation under sub-activities.

4 Type System

For types we rely on an additional base set of singleton types ranged over by α . The syntax of types
depicted in Figure 6 introduces of the unit value type (unit) and the clock type (clock(α)). We assign a
different type (singleton type α) to each clock in order to track clock usage throughout the program.

The type system for X10 |clocks programs is defined in Figures 7 and 8. A typing Γ is a map from
variables (or activity labels) and clocks to types. We write domΓ for the domain of Γ. When x 6∈ domΓ

7

X10 clocks Martins, Vasconcelos, and Cogumbreiro

R,α ` clock(α) R ` unit (T-WF-C, T-WF-U)
R ` τ

Γ,x : τ;R ` x : τ
Γ,c : clock(α);R,α ` c : clock(α) Γ;R ` () : unit

(T-VAR, T-CLOCK-REF, T-UNIT)
Γ;R ` v1 : clock(α1) · · · Γ;R ` vn : clock(αn) αi 6= α j, if i 6= j αi not in Γ

Γ;R ` v1 . . .vn : {α1, . . . ,αn}
(T-CLOCK-SEQ)

Figure 7: Typing rules for values and for well-formed types

Γ;R ` v : τ

Γ;R;Q ` v : (τ,R,Q)
α is fresh

Γ;R;Q `make : (clock(α),R ∪{α},Q)
(T-VALUE, T-MAKE)

Γ;R ` v : clock(α) α /∈Q

Γ;R;Q ` resume v : (unit,R;Q∪{α})
Γ;R ` v : clock(α)

Γ;R;Q ` drop v : (unit,R \{α},Q \{α})
(T-RESUME, T-DROP)

Γ;R `~v : R ′ Γ;R ′;Q∩R ′ ` e : (, /0, /0)
Γ;R;Q ` async~v e : (unit,R;Q)

Γ;R;R ` next : (unit,R; /0) (T-ASYNC,T-NEXT)

Γ; /0; /0 ` e : (τ, /0, /0)
Γ;R;Q ` finish e : (τ,R;Q)

(T-FINISH)

Γ;R;Q ` e1 : (τ,R ′,Q′) Γ,x : τ;R ′;Q′ ` e2 : (τ ′,R ′′,Q′′)
Γ;R;Q ` let x = e1 in e2 : (τ ′,R ′′,Q′′)

(T-LET)

Figure 8: Typing rules for expressions

we write Γ,x : τ for the typing Γ′ such that domΓ′ = domΓ∪{x}, Γ′(x) = τ , and Γ′(y) = Γ(y) for y 6= x.
The type system also uses sets of singleton types, ranged over by R, for registered clocks, and Q, for
resumed clocks.

The typing rules for values and for well formed types (Figure 7) are simple to follow. Well-formedness
for clock types (rule T-WF-C) ensures that activities only make use of clocks they are registered with.
Rule T-CLOCK-SEQ ensures that clock lists (as those in the heap) have distinct singleton clock types
assigned to them, a property that is crucial for establishing type safety. For typing expressions we use a
type system (Figure 8) that records the changes made to the set of registered clocks, either by creating
or dropping clocks, and to the set of quiescent clocks (using resume and next) of an expression. Typing
judgements are of the form Γ;R;Q ` e : (τ,R ′,Q′) meaning that expression e is well typed assuming
the types for the free identifiers in Γ, the registered clocks in R, and the quiescent clocks in Q. The
type of an expression is a triple recording its type τ , the sets registered (R ′) and quiescent (Q′) after
execution of the expression.

Most typing rules are straightforward. When creating a clock (rule T-MAKE) we associate a new
singleton type α with the clock and include it in set of clocks registered by the activity (R ∪ {α}).
Rule T-RESUME, which asserts that activities can only resume a clock α in the set of registered clocks R
(vide rule T-VAR), marks clock α as quiescent. Notice that a clock cannot be resumed more than once
for the same phase (α 6∈R). A drop v expression removes clock v from both the sets R and Q, thus
the clock cannot be passed to new activities, be the target of a resume expression, or be dropped again.

8

X10 clocks Martins, Vasconcelos, and Cogumbreiro

Rule T-ASYNC asserts that when an activity spawns another activity registered on a sequence of clocks,
the quiescent property of the clocks is preserved by propagating the information about the quiescent clock
α (Q∩R). Moreover, the new activity must have dropped all its clocks upon termination. Expression
next marks the end of a phase; it checks that all clocks have been resumed and clears the quiescent clocks
for the new phase (rules T-NEXT).

The finish construct may interfere with clocks and cause programs to deadlock. In order to avoid
such situations we prevent the body of a finish e expression (e) from accessing any clock already defined,
thus eliminating (nested) dependencies between clocks and finish . Rule T-FINISH also forces e to
unregister from all clocks it has created, and therefore finish e has no effect on registered and quiescent
clocks. Refer to the examples below for further discussion on the deadlock problem. When typing a let
expression (rule T-LET), its continuation e2 is typed taking into consideration the effects produced by
expression e1. The type of the let are that of e2, as usual.

We have deliberately deviated from the standard X10 semantics in three cases: next, drop, and
resume. The reasons for such deviation are: (a) to illustrate the power of singleton types in keeping
track of clocks, (b) to simplify the (operational and static) semantics, (c) to enforce a programming
discipline that may avoid potential bugs, and (d) because the compiler has enough information to suggest
code fixes (e.g., by enumerating the clocks that need to be dropped before a next; see examples below).

Next we discuss some X10|clocks programs and the semantic guarantees enforced by the type system.
Our first example concerns clock aliasing. The report on X10 [4] read until recently “All clock variables
are implicitly final. The initializer for a local variable declaration of type Clock must be a new clock
expression. Thus X10 does not permit aliasing of clocks.” Clearly a type system with linear control like
the one we present allows to relieve such a restriction. The following example is not typable in X10.

let x = make in
let y = x in (

async y (resume x; drop y);
drop x)

In our case the code is typable, assigning the same singleton type clock(α) to both x and y.
Our second example deals with the so called live clock condition. Apart from the errors in Figure 5,

X10 identifies another source of problems: allowing an activity to transmit a clock that has been resumed
to a spawned activity (with async). Our operational semantics allows the forked activity to inherit the
“status” (resumed/not resumed) of the parent activity (vide rule R-ASYNC) and therefore preserve the
quiescence property of clocks and avoid a race condition on the clock. The following example is not
typable in X10 [4].

let x = make in (
resume x;
async x (resume x; next; drop x);
drop x)

Below we describe a race condition triggered by clock synchronisation. Activity a1 creates a clock
x, starts a second activity a2 registered with clock x that, in turn, resumes on x and starts a third activity
a3 also registered with x.

1 // activity a1
2 let x = make in (
3 async x (// activity a2
4 e1 ;
5 resume x;
6 e2 ;

9

X10 clocks Martins, Vasconcelos, and Cogumbreiro

7 async x (// activity a3
8 e3 ;
9 next;

10 drop x);
11 next;
12 drop x);
13 e4 ;
14 next;
15 drop x)

The race condition might occur because after a2 resumes on x (line 5), either activity a1 may advance
clock x phase by executing next (line 14) or a2 may register a new activity a3 with x (line 7), blocking
a1 until activity a3 executes its next instruction (line 9). By inheriting the resume status of clock x,
activity a3 does not block activity a1 and the race condition disappears (vide rule R-ASYNC in Figure 3
and rule T-ASYNC in Figure 8).

The next example deals with resuming after resuming, a pattern accepted in X10. Rule T-RESUME

rejects the program, since it is able to determine that clock x is resumed twice.

let x = make in (
resume x;
resume x)

Unlike X10, we have decided to explicitly deregister activities from clocks upon activity termination.
Our type system keeps track of the clocks an activity is registered with, and rejects programs with activ-
ities that finish before deregistering from all its clocks. Clocks without registered activities can be safely
garbage collected (vide rule R-DROP). The following example fails to type check, since the launched ac-
tivity does not drop clock x. Although, the compiler may suggest an appropriate fix, in this case adding
a drop x after the next instruction on line 2.

1 let x = make in (
2 async x (resume x; next);
3 drop x)

Finally, we discuss the interplay among finish, async, and clocks, which may cause programs to
deadlock. The following program deadlocks because activity a2 is waiting on next (line 4) for activity a1
to advance on x, which is planned to occur at line 6, but a1 is waiting on finish (line 3) for activity a2 to
terminate, so a1 never reaches line 6 and the program deadlocks.

1 // a1
2 let x = make in (
3 finish
4 async x (resume x; next; drop x); // a2
5 resume x;
6 next;
7 drop x)

The cause for deadlock is that activity a2 is registered with a clock that is defined outside the enclosing
finish: clock x is defined in line 2, whereas the finish expression extends from line 3 to line 4. Our type
system rejects this program, because when typing a finish e expression we type check e in an environment
with no registered clocks (vide rule R-FINISH).

10

X10 clocks Martins, Vasconcelos, and Cogumbreiro

c ` A : S1 c ` A′ : S2

c ` A,{l : (V, ,A′)} : S1∪S2∪domV ∩{c}
c ` /0 : /0

(WF-ACT-CLOCK, WF-ACT-CLOCK-E)
Q⊆ S⊆ domΓ c ` A : S Γ;A ` H : �

Γ;A ` H,{c : 〈 ,S,Q〉} : �
Γ;A ` /0 : � (WF-HEAP, WF-HEAP-E)

H(ci) = 〈 ,Ri, 〉 l ∈Ri H ` A : � H ` A′ : �
H ` A,{l : ({c1 : , . . . ,cn : }, ,A′)} : �

H ` /0 : �

(WF-ACT-SET, WF-ACT-SET-E)
H ` A : � Γ;A ` H : �

Γ ` H;A : �
(WF-STATE)

Figure 9: Well-formed states

Γ, l : τ;R;Q ` join l : (τ,R,Q) (T-JOIN)

Figure 10: Typing rules for run-time expressions

5 Main results

This section is dedicated to the study of the main result of our system, namely typing preservation and
type safety for typable programs.

We are only concerned with well-formed states (Figure 9). A state is well formed if for each clock,
the set of registered activities with the clock contains exactly those activities that can manipulate it. State

{c : 〈 , /0, 〉};{l : ({c : }, let = next in ,)}

is ill formed, since activity l uses clock c and is not registered with c. The activity is able to advance c’s
phase without becoming quiescent on c. State

{c : 〈 ,{l, l′, . . .}, 〉};{l : (/0, ,), l′ : ({c : }, ,), . . .}

is also ill formed, since activity l is mentioned as registered with clock c and is not part of l’s local view
(which is /0). Any other activity registered with c (l′ in the example) is bound to deadlock because l will
never quiesce on c.

The typing rules for run-time expression join l and for machine states and activities is depicted in
Figures 10 and 11. The type of a join l expression (rule T-JOIN) is that of activity l. Notice that join l is
the result of evaluating a finish e expression (rule R-FINISH) that is, in fact, the type of e (rule T-FINISH).
It is worth noticing that heap H is well typed if H each clock is assigned to a different singleton type
and if the clocks allocated in the heap are exactly those of typing Γ (rule T-HEAP where C is the set of
all clocks). Moreover, activities may only resume on registered clocks. An activity (V,e,A) has the type
of its expression e (rule T-ACT), which must unregister from all its clocks before terminating, since after
evaluating e it is expected that the set of registers clocks should be empty. Rule T-STATE incorporates
the definition of well-formed states into the type system. The remaining typing rules should be easy to
follow.

Lemma 1 (Weakening). Let a be a variable or a clock name.

11

X10 clocks Martins, Vasconcelos, and Cogumbreiro

Γ;R ` c1 . . .cn : R

Γ ` {c1 : , . . . ,cn : } : R
(T-VIEW)

Γ `V : R Q ⊆R Γ;R;Q ` e : (τ, /0, /0) Γ ` A
Γ ` (V,e,A) : τ

(T-ACT)

Γ ` a1 : τ1 · · · Γ ` an : τn

Γ, l1 : τ1, . . . , ln : τn ` {l1 : a1, . . . , ln : an}
(T-ACT-SET)

Γ;R ` c1 . . .cn : R {c1, . . . ,cn}= domΓ |C
Γ ` {c1 : h1, . . . ,cn : hn}

(T-HEAP)

Γ ` H;A : � Γ ` H Γ ` A
Γ ` H;A

(T-STATE)

Figure 11: Typing rules for machine states

1. If H ` A : � then H,{c : h} ` A : �.

2. If Γ;R ` v : τ then Γ,a : τ ′ ` v : τ .

3. If Γ `V : R then Γ,a : τ `V : R.

4. If Γ;R;Q ` e : T then Γ,a : τ;R;Q ` e : T .

Proof outline. 1. By induction on the derivation of the typing rules. Case WF-ACT-SET-E is direct.
Case WF-ACT-SET we use the induction hypothesis to prove that H,{c : h} ` A : � and H,{c : h} `
A′ : �; the remaining conditions are given by the hypotheses.

2. By inspecting the typing rules.

3. We apply rule T-VIEW to typify the clocks of the view, then we prove T-CLOCK-SEQ with (2).

4. By induction on the derivation of the typing relation. Cases T-MAKE, T-NEXT, and T-JOIN are
direct. Case T-RESUME and T-DROP are proved similarly, using (2) to typify clock v. The proof
for cases T-FINISH, T-ASYNC, and T-LET follow by induction hypothesis. For case T-ASYNC we
also use rule T-CLOCK-SEQ and (2) to typify the clocks of the arguments.

Notice we do not allow heap weakening for it would introduce in the type environment clocks not
present in the state.

Lemma 2 (Substitution). If Γ;R ′ ` v : τ and Γ,x : τ;R;Q ` e : T and R ⊆R ′ then Γ;R;Q ` e[v/x] : T .

Proof outline. For T-VALUE we analyse two cases: when the value is the variable being substituted,
and when the it is not replaced. For the former case, we apply lemma 1 on the first hypothesis. For
the latter case we use rule T-VAR. Rules T-MAKE, T-NEXT, and T-JOIN are direct. Cases T-DROP

and T-RESUME follow by induction hypothesis. Rule T-ASYNC is the most complex. For the clocks
being shared we use lemma 1 and the second hypothesis. For the expression being spawned we apply the
induction hypothesis. Rule T-FINISH is proved similarly to T-ASYNC, but simpler since T-FINISH has no
arguments and its set of clocks is empty.

12

X10 clocks Martins, Vasconcelos, and Cogumbreiro

Lemma 3 (Preservation for activities). If Γ ` H and Γ ` V : Q and Q ⊆ R and Γ;R;Q ` e : T and
Γ ` A and l ∈ domH and H;(V,e,A)→l H ′;A′′;(V ′,e′,A′), then Γ′ ` H ′ and Γ′ ` V ′ : Q′ and Q′ ⊆R ′

and Γ′;R ′;Q′ ` e′ : T and Γ′ ` A′,A′′, for some Γ′ ⊇ Γ.

Proof outline. Despite the scary look of the statement, its proof is a routine inspection of the rules in the
relation H;(V,e,A)→l H ′;A′′;(V ′,e′,A′).

Lemma 4 (Preservation for X10 |clocks). If Γ ` S and S→ S′ then Γ′ ` S′ and Γ⊆ Γ′.

Proof outline. By induction on the derivation of the relation S→ S′. In all cases we build the derivation
tree for Γ` S using rules T-STATE, T-ACT-SET, and T-ACT, collect the hypotheses, use the above lemmas,
and then build a tree for Γ′ ` S′ using the same typing rules. The base cases are when the derivation ends
with rules R-LET-VAL and R-LET. For R-LET-VAL we take Γ′ = Γ and use the substitution lemma 2.
For R-LET we use the (specially crafted) preservation for activities (lemma 3), as well as the weakening
(lemma 1) for the extant activity set A. The induction step is when derivation ends with rule R-ACTIVITY;
in this case we use the weakening lemma.

Theorem 5 (Type Safety). If Γ ` S and S→∗ S′, then S′ /∈ Error.

Proof outline. We first establish that Γ′ ` S′ using preservation (lemma 4). Then we proceed by contra-
diction. The contradiction is proved by induction on the definition of Error predicate. For the base cases
of resume, drop, and async we build the derivation trees for the errors in Figure 5, to conclude that
Γ′ `V : R and Γ′;R ` c : clock(α). Sequent Γ′ `V : R is derived from rule T-VIEW, which effectively
establishes a one-to-one correspondence between the clock names c in V and the singleton types α in
R. On the other hand, sequent Γ′;R ` c : clock(α) is derived via rule T-WF-C, which says that α ∈R.
Since α ∈R, the correspondence allows us to conclude that c ∈ domV . Establishing that v ∈ domH is
easier. Given that Γ′ ` H, we conclude that domH = dom(Γ′ |C), and from sequent Γ′;R ` c : clock(α)
we know that c ∈ domΓ′, hence done.

We anticipate a progress property for typable processes. Typability ensures that processes do not get
stuck when dropping a clock that is not in its clock set anymore, or when otherwise trying to access a
clock that it not allocated in the heap. The remaining case is next where the activity waits for set C1 (the
set of quiescent clocks the activity is registered with) to grow until becoming (together with C2—the set
of clocks that have already advance their phase) the clock set of the activity. And this is bound to happen
for both next and drop, since in each activity both implicitly resume all clocks. We foresee as well that
typability also rules out programs that deadlock, since finish expressions can only use clocks created in
its body expressions.

6 Discussion and future work

We study two synchronisation constructs of X10: a primitive finish that waits for the termination of ac-
tivities (lightweight threads), and clocks (a generalisation of barriers). To better understand the language
we define an operational semantics and a type system (alternative to the constraint-based system [5]) for
a subset of X10 called X10 |clocks. Our main result is the type safety of the language (Theorem 5) and
we expect to have a progress property that will allow us to prove deadlock freedom.

13

X10 clocks Martins, Vasconcelos, and Cogumbreiro

Our semantics represents clocks in the heap as triples 〈p,R,Q〉 relying on two sets for recording
the registered activities R and the quiesced activities Q on a clock. Implementing operations that work
with sets is costly; for instance rule R-NEXT needs to compute sets C1 and C2, by checking if sets R
and Q are equal, and then verify if C1∪C2 = domV . Should we make a real life implementation of the
proposed semantics, set operations would have a significant impact on performance. We sketch a much
faster approach that chooses to represent clocks as triples 〈p,r,q〉 describing the clock phase, as before,
but taking r and q as the cardinal numbers of sets R and Q. With this representation we lose information
about the identity of the activities registered with a clock and, in particular, we cannot determine if an
activity has already resumed in the current phase (vide rules R-ASYNC and R-RESUME). To overcome
this problem we need to enrich the clock local view with an indicator of whether an activity has resumed
in the current phase. Thus, a clock local view becomes a pair 〈p,b〉 containing the current clock phase p
(as before) and the resume boolean indicator b, describing when the activity has resumed. With this
information it is straightforward to adapt rules R-ASYNC, R-MAKE, R-RESUME, R-NEXT, and R-DROP.
For instance, rule R-RESUME only updates the clock global view (q← q + 1) whenever its local view
indicator is false. Also, rule R-NEXT needs to set r to zero when advancing the clock global phase, and
to clear the indicator b upon advancing the clock local phase. Checking that all activities registered with
a clock have quiesced amounts to compare two integer values (r = s), instead of two sets R and Q as
before. The main reasons for not adopting the semantics just sketched are that the chosen semantics
needs fewer rules and is easier to read and understand.

We intend to investigate imperative features of the language, specially those related with clocks, and
also other language constructs. The language report reads “X10 does not contain a register statement that
would allow an activity to discover a clock in a data structure and register itself on it”; we would like
to study type-safe extensions to the language that might alleviate this restriction in controlled situations.
Furthermore, we expect to extend our results to X10 |clocks equipped with recursion or some form of
iteration. Futures are an example of such construct. This primitive is a form of a function that evaluates
asynchronously, like an activity, but can be forced to finish locally to return a value. The semantics of a
future, in what regards termination, is like the finish construct, but its use cases are different. We would
also like to allow futures to register themselves with clocks, a feature missing in X10.

Phasers are a coordination construct that unifies collective and point-to-point synchronisations with
performance results competitive to existing barrier implementations [6]. Phasers can be seen as an ex-
tension over clocks that allow for more fine-grained control over synchronisation modes. Phaser ac-
cumulators are reduction constructs for dynamic parallelism that integrate with phasers [7]. Although
further investigation is needed, we believe our work can be extended to accommodate phasers and phaser
accumulators, specially with regards to the operational similarities between clocks and phasers.

References

[1] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,
Christoph von Praun, and Vivek Sarkar. X10: an object-oriented approach to non-uniform cluster computing.
In Proceedings of OOPSLA’05, pages 519–538. ACM, 2005.

[2] Rajiv Gupta. The fuzzy barrier: a mechanism for high speed synchronization of processors. SIGARCH
Computer Architecture News, 17(2):54–63, 1989.

[3] Jonathan K. Lee and Jens Palsberg. Featherweight X10: a core calculus for async-finish parallelism. In
Proceedings of PPoPP’10, pages 25–36. ACM, 2010.

[4] Vijay Saraswat. Report on the programming language X10, version 2.01. Technical report, IBM Research,
2010.

[5] Vijay Saraswat and Radha Jagadeesan. Concurrent clustered programming. In Proceedings of CONCUR’05,
volume 3653 of LNCS, pages 353–367. Springer, 2005.

14

X10 clocks Martins, Vasconcelos, and Cogumbreiro

[6] Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N. Scherer. Phasers: a unified deadlock-free
construct for collective and point-to-point synchronization. In ICS’08: Proceedings of the 22nd annual inter-
national conference on Supercomputing, pages 277–288. ACM, 2008.

[7] Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N. Scherer. Phaser accumulators: A new reduction
construct for dynamic parallelism. In IPDPS’09: Proceedings of the 2009 IEEE International Symposium on
Parallel&Distributed Processing, pages 1–12. IEEE Computer Society, 2009.

[8] Vasco T. Vasconcelos, Francisco Martins, and Tiago Cogumbreiro. Type inference for deadlock detection in
a multithreaded typed assembly language. In Post-proceedings of PLACES’09, volume 17 of EPTCS, pages
95–109, 2010.

15

	Introduction
	Syntax
	Operational Semantics
	Type System
	Main results
	Discussion and future work

