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Abstract

Model checking has often been used for verifying Cyber-Physical Sys-
tems (CPS). A major challenge is how to capture a model that represents
the actual behavior of the software. Model extraction can introduce er-
rors that can affect the accuracy of the analysis including loss of precision,
inconsistency, non-conformance, and over- and under-approximations.

In this paper, we formalize and prove the correctness of extracting a
model from a subset of the MicroPython programming language with re-
spect to a trace-based semantics. The extracted models capture the order
of method calls and can be model checked using Shelley. We formalize
the extraction process from an intermediate representation of MicroPy-
thon codes and prove that the behavior of our intermediate representation
is a regular language. Our formalization and theoretical results are fully
mechanized using the Coq proof assistant.

∗Edit by Tiago Cogumbreiro (January 2, 2024): added syntax of sequence to Fig-
ure 4; described syntax of sequence in §3.2. Paper originally published at the 1st Interna-
tional Workshop on Verification & Validation of Dependable Cyber-Physical Systems. DOI:
10.1109/DSN-W58399.2023.00069
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1 Introduction

Model extraction [32, 45] is the process of automatically generating a model that
captures the behavior of a system and its key properties. Model extraction is a
balancing act between two approaches: over-approximation where the extracted
model is too general and includes more behaviors than in the original system,
e.g., may trigger alarms that do not appear in practice; under-approximation
where the extracted model is incomplete and misses certain behaviors, e.g.,
may miss certain alarms. Further, the extraction process must carefully select
a level of detail of a system: adding too much detail makes the model too big
and impossible to analyze due to the state-explosion problem. Additionally,
inaccuracies and bugs in the extraction process may lead to spurious behaviors
that lead to incomplete or incorrect verification results [10].

Model extraction is particularly important in the context of cyber-physical
system (CPS) applications, where the correctness and safety of the system are
critical [28, 34, 38, 48, 42, 39, 47]. CPS applications typically involve the integra-
tion of physical systems, such as sensors, actuators, and control systems. This
paper focuses on formalizing the model extraction process of CPS applications
written in MicroPython [26] to be used in the context of model checking.

Formalizing model extraction has the following benefits. Firstly, the formal-
ization offers a clear and precise description of the extraction process, which
improves the understanding of the capabilities of our model checker. Secondly,
having the extraction process formalized allows us to reason about properties
of the source system and of the target model. Importantly, we can characterize
the expressiveness of the extraction.

This paper specifies the model extraction of Shelley [17], a model-checking
framework that features linear temporal logic on finite traces (LTLf) [2, 19].
Similar tools exist for other languages including Java [27, 30, 9], C++ [6], and
Lustre [24, 30] although their focus is usually on concurrency. In contrast, our
temporal claims are written in terms of function calls that manipulate physical
resources that can be specified with ordering constraints. MicroPython classes
that directly manipulate physical resources (called constrained classes/objects)
are annotated with ordering constraints, akin to typestates [51]. Further, and
without resorting to any more ordering annotations, our analysis verifies the cor-
rect usage of constrained objects, and infers the ordering constraints of methods
using other constrained objects. Unlike most model checkers, Shelley models
do not capture state change of program-variables, nor the communication of
concurrent systems [31, 46, 37, 24, 13, 7, 12].

In summary, our paper makes the following contributions:

1. We formalize the process of extracting a Shelley model from a small im-
perative language.

2. We prove the correctness of the extraction process: a trace is produced by
the source program if, and only if, a trace is produced by the behavior of a
program. We show that the behavior of a program is a regular language.

2



Table 1: Shelley’s annotations, where to apply them in a MicroPython program,
and their meanings.

Annotation Applies to Meaning
@claim class temporal requirement
@sys class base class
@sys(["s1,",. . . ,"sn"]) class composite class
@op initial method invoke in first place
@op final method invoke in last place
@op initial final method invoke in first and last places

@op method
invoke in between an initial
and final methods

3. The formalization and the results of this paper are fully mechanized using
the Coq proof assistant and are available in [16].

The rest of the paper is organized as follows. Section 2 overviews our ap-
proach through a series of examples. Section 3 presents our model inference,
formalizes the behavior extraction of a program (which represents the code of a
method declaration), and establishes our main result of correctness. Section 4
discusses related work. Finally, Section 5 concludes the paper and considers the
next steps in our research.

2 Model checking with Shelley

In this section, we detail how to use the Shelley framework to model check
a MicroPython program. Our tool provides a MicroPython Application Pro-
gramming Interface (API) that enables the automatic verification of the order
of method calls in an object hierarchy. We use annotations, according to Table 1,
so that developers can provide more information about the expected behavior of
methods and prevent an unintended order of actions from occurring. This way,
we enforce the behavior of an object and how it can be used in such a way that
we can model check temporal requirements. Shelley includes a visualization tool
that automatically generates behavior diagrams based on the code annotations
and based on the control flow of the code under analysis.

To make our analysis scalable, Shelley makes two important design decisions:
a restricted programming model, and an over-approximated behavior. Regard-
ing the former, Shelley does not support non-terminating (infinite) behaviors,
ignores object aliasing, and only considers method invocation of fields. Regard-
ing the latter, our approach is closer to type checking of a behavioral type,
than to model check the full behavior of a program. The code of each method
must be expressed as a regular expression representing any possible sequence
of method calls. Shelley features sequencing, nondeterministic choice, and ter-
minating loops (via the Kleene-star operator). Further, our tool disregards the
program’s internal state, e.g., the arguments of method calls, the condition used
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Listing 2.1: Class Valve

1 @sys
2 class Valve:
3 def __init__(self):
4 self.control = Pin(27, OUT)
5 self.clean = Pin(28, OUT)
6 self.status = Pin(29, IN)
7

8 @op_initial
9 def test(self):

10 if self.status.value():
11 return ["open"]
12 else:
13 return ["clean"]
14

15 @op
16 def open(self):
17 self.control.on()
18 return ["close"]
19

20 @op_final
21 def close(self):
22 self.control.off()
23 return ["test"]
24

25 @op_final
26 def clean(self):
27 self.clean.on()
28 return ["test"]

to branch, and the loop bounds.
We now give a brief guide on the annotations that Shelley offers to ver-

ify a MicroPython class. Our running example is based on an industrial use
case in [18], a battery-operated wireless controller that switches water valves
according to a scheduled irrigation plan.

2.1 Specifying a class behavior

Valves are electromechanical devices that can be programmed to control water
flow. Class Valve uses general-purpose input-output pins to operate a physical
valve, as seen in Listing 2.1. Our verification goal is to minimize the chance of
clogging the physical valve, so users of the Valve must test the status of the
valve before opening it. Additionally, to conserve battery, we want to verify
that users of Valve always test the status of the valve before cleaning up any
debris. The class annotation @sys, in Line 1, tells Shelley to verify class Valve.
The method annotations @op initial, @op, and @op final tell Shelley which
methods to consider in the verification. We list our annotations in Table 1.
To meet our verification goals, Shelley ensures that any users of Valve (e.g.,
Listing 2.2) respect the specified method-ordering.

We now explain how to declare the method-ordering shown in Figure 1.
The annotation op initial ensures that after creating an instance of Valve the
only method that can be invoked is test (Lines 9 to 13) — multiple methods
can be declared as initial. Each annotated method must return the set of
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Listing 2.2: Class BadSector

1 @claim("(!a.open) W b.open"))
2 @sys(["a", "b"])
3 class BadSector:
4 def __init__(self):
5 self.a = Valve()
6 self.b = Valve()
7

8 @op_initial_final
9 def open_a(self):

10 match self.a.test():
11 case ["open"]:
12 self.a.open()
13 return ["open_b"]
14 case ["clean"]:
15 self.a.clean()
16 print("a failed")
17 return []
18

19 @op_final
20 def open_b(self):
21 match self.b.test():
22 case ["open"]:
23 self.b.open()
24 self.a.close()
25 self.b.close()
26 return []
27 case ["clean"]:
28 self.b.clean()
29 print("b failed")
30 self.a.close()
31 return []

test

clean

open

test

close

test

Figure 1: Valve diagram automatically generated by our tool based on the
annotations of Listing 2.1.
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Table 2: Examples of return statements and their meanings.

Return statement Meaning

return ["close"]
expecting method ”close” to be
invoked next

return ["open", "clean"]
expecting methods ”open” or
”clean” to be invoked next

return ["close"], 2
expecting operation ”close” to be
invoked next and return the integer
value 2

return ["close"], True
expecting method ”close”
to be invoked next and return the
boolean value True

return ["open", "clean"], 2
expecting methods ”open” or
”clean” to be invoked next and
return the integer value 2

open_a a.test

a.clean

a.open
open_b b.test b.open

b.clean

a.close

a.close

b.close

Figure 2: BadSector diagram (invalid usage of valves). After opening valve a we
reach a possible final state, leaving valve a open and not respecting the Valve
specification.

methods of Valve that can be invoked subsequently. For instance, after invoking
test the return value can be ["open"], which means that the user must then
invoke method open. Alternatively, after invoking test the return value can
be ["clean"], so the user must invoke method clean. If a return statement
allows several calls to follow it, we use the nomenclature return ["m1", . . . ,
"mn"] and if no calls shall follow it we return an empty list. Finally, user-return
values are also supported by using tuples, where the first position is reserved to
specify the next available methods. Some examples are given in Table 2.

The decorator op final allows for the declaration of “destructor” methods:
method close must be the last method called, with respect to the object’s
lifetime. Importantly, since open is not marked as final, Shelley guarantees that
the valve cannot be left open.

2.2 Verifying object usage

We now describe how Shelley verifies that class BadSector incorrectly uses in-
stances of Valve. Further, we introduce the use of temporal claims to model
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check the usage of verified instances. Shelley only considers the order of calls
and disregards any values used in boolean conditions, loop ranges, and being
passed in method calls. Shelley supports branching with if/elif/else and
match/case and looping with for and while.

Class BadSector in Listing 2.2 handles the opening of valves in two separate
methods — in the irrigation jargon, a sector is an irrigation zone where several
water valves are grouped together. BadSector is a composite class since it uses
two instances of Valve, a and b. Thus, depending on the method’s annotations
of BadSector, we might use the two valves in different ways. Shelley identifies
the following invalid usage of Valve. Since method open_a is decorated with
initial and final, this means that a user of BadSector could issue open_a
without ever issuing open_b, potentially leaving valve a open, something that,
according to the Valve’s specification, is an incorrect behavior, as depicted
in Figure 2. Shelley outputs the following error message:

Error in specification: INVALID SUBSYSTEM USAGE
Counter example: open_a, a.test, a.open
Subsystems errors:

* Valve ’a’: test, >open< (not final)

Matching exit points In Lines 10 and 21 we intentionally use the match
statement to distinguish the cases where the method being called has more
than one exit point. For instance, as seen before, the Valve’s method test can
be followed by either open or clean. Therefore, our tool checks if all possible
exit points are being handled.
Checking temporal requirements Correctness claims express temporal prop-
erties on the code of the class being verified. Temporal claims are of great im-
portance for software maintenance, as Shelley can check if changes to the class
preserve the internal behavior being specified. Besides automatically verifying
that each valve is being used according to the specification in Listing 2.1, Shelley
also verifies temporal requirements. The temporal claim in Line 1 of Listing 2.2
states that valve a must remain closed until valve b is opened. The imple-
mented behavior violates the temporal claim, so Shelley outputs the following
error message:

Error in specification: FAIL TO MEET REQUIREMENT
Formula: (!a.open) W b.open
Counter example: a.test, a.open, b.test, b.open, a.close, b.close

The formula ϕ1Wϕ2 = (ϕ1Uϕ2)∨Gϕ1 is interpreted as a weak until, meaning
that ϕ1 has to hold at least until ϕ2 or ϕ1 must remain true forever.

3 Model inference

In this section we detail the process of extracting a Shelley model from a Mi-
croPython class. The model checking of a Shelley model is outside of the scope
of this paper, so here we only focus on defining what constitutes a Shelley model.
The model extraction process consists of the following steps:

1. method dependency extraction: (Section 3.1) our tool captures the
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Listing 3.1: Class Sector with code elided to only show returns per method.

1 class Sector:
2 def open_a(self):
3 # ...
4 return ["close_a", "open_b"]
5 # ...
6 return ["clean_a"]
7

8 def clean_a(self):
9 return ["open_a"]

10

11 def close_a(self):
12 # ...
13 return ["open_a"]
14

15 def open_b(self):
16 # ...
17 return []
18 # ...
19 return []

open_a

open_a_1

open_a_2

open_b

close_a

clean_a

open_a

open_b_1

open_a

Figure 3: Shelley model of class Sector.
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dependencies between methods being defined.

2. method behavior extraction: (Section 3.2) our tool extracts the be-
havior of each method being defined.

3. method invocation analysis: we check if method invocation of objects
under analysis are defined in their respective classes; we also check for
exhaustive tests on matches that take the result of a method-invocation
under analysis.

3.1 Method dependency extraction

The method-dependency is defined as a directed graph, where the nodes repre-
sent the entry point of each method name and every exit point of a method; the
arcs are ordering constraints. There is a single entry node per method. For in-
stance, in Listing 3.1, we have 4 methods (open a, clean a, close a, and open b),
so there are 4 entry nodes. In addition, there is an exit node per return in each
method. For example, in Listing 3.1, method open a has 2 return statements,
thus we have 2 exit nodes: exit node, say (A), represents return ["close a",
"open b"], and the exit node, say (B), represents return ["clean a"]. We link
each entry node of a method to each of its exit nodes. For instance, in Figure 3,
the entry node of open a links to nodes (A) and (B). Finally, for each exit node
and each method name being returned, we link the exit node to the entry node
of the method being returned. That is, since exit node (A) returns ["close a",
"open b"], we link exit node (A) to the entry node of method close a, and exit
node (A) to the entry node of method open b.

3.2 Method behavior extraction

In this section we formalize how our tool infers the behavior of each method, de-
scribed as a regular expression. The formalization included in this paper, along
with the theoretical results presented, are fully mechanized using the Coq proof
assistant. The syntax of the source language is an abstraction of MicroPython,
that captures the control flow of the program and function calls — our input
language ignores the intermediate values being calculated. The syntax of the
source language, its semantics, and the behavior inference is given in Figure 4.
Syntax. The syntax of a program p consists of: f() to encode a method call
(discarding the arguments); skip represents any MicroPython instruction that
is of no interest to the analysis; return to return a value, where the actual
value being returned is ignored at this stage of the analysis; p1; p2 sequences
program p1 followed by program p2; if(⋆) {p1} else {p2} represents a non-
deterministic choice, as the condition is not represented; loop(⋆) {p} represents a
loop that runs p an unknown number of iterations. Supported Python constructs:
our analysis represents for and while as a loop, match and if as a conditional;
our analysis does not model Python exceptions.
Semantics. We give semantics to our syntax in terms of the sequences of labels
that a program outputs. The judgment s ⊢ l ∈ p denotes that trace l (a sequence
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Syntax

p ::= f() | skip | return | p; p | if(⋆) {p} else {p} | loop(⋆) {p}

s ::= O | R

Semantics s ⊢ l ∈ p

call

O ⊢ [f ] ∈ f()

skip

O ⊢ [] ∈ skip

return

R ⊢ [] ∈ return

seq-1

R ⊢ l ∈ p1

R ⊢ l ∈ p1; p2

seq-2

O ⊢ l1 ∈ p1 s ⊢ l2 ∈ p2

s ⊢ l1 · l2 ∈ p1; p2

if-1
s ⊢ l ∈ p1

s ⊢ l ∈ if(⋆) {p1} else {p2}

if-2
s ⊢ l ∈ p2

s ⊢ l ∈ if(⋆) {p1} else {p2}

loop-1

O ⊢ [] ∈ loop(⋆) {p}

loop-2
R ⊢ l ∈ p

R ⊢ l ∈ loop(⋆) {p}

loop-3
O ⊢ l1 ∈ p s ⊢ l2 ∈ loop(⋆) {p}

s ⊢ l1 · l2 ∈ loop(⋆) {p}

Behavior inference [[p]] = (r, s) infer(p) = r

[[f()]] = (f, ∅) [[skip]] = (ϵ, ∅) [[return]] = (∅, {ϵ})

[[p1; p2]] = (r1 · r2, {r1 · r | r ∈ s2} ∪ s1)

[[if(⋆) {p1} else {p2}]] = (r1 + r2, s1 ∪ s2)

[[loop(⋆) {p1}]] = (r⋆1 , {r⋆1 · r | r ∈ s1})

where [[p1]] = (r1, s1) and [[p2]] = (r2, s2)

infer(p) = r1 + r′1 + · · ·+ r′n where [[p]] = (r1, s1) ∧ s1 = {r′1, . . . , r′n}

Figure 4: Extracting the behavior from imperative code
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of labels f) is output by program p when the program has a certain status s
(which is either O for ongoing, or R for returned). Our intuition behind using
the term “returned” is in the sense that no other terms of the trace can be in a
returned trace, whereas a “ongoing” trace can be sequenced further. We denote
a sequence comma separated between brackets, e.g., a sequence with digits 0,
1, and 2 is denoted by [0, 1, 2]. The usual sequence concatenation is denoted
by l1 · l2. Rule call states that trace [f ] is in program f() when the program
is still ongoing (O). Rule skip states that empty trace [] is in program skip
when the program is still ongoing (O). Rule return states that empty trace []
is in program skip when the program has returned (R). The rules are that of
sequence. Rule seq-1 states that if a certain trace l is in p1 and that trace has
returned (due to a return), then program p1; p2 also outputs trace l. Rule seq-2
states what happens if trace l1 of p1 is ongoing (O), then we can prepend l1 to
any trace l2 from p2 in p1; p2. Rule if-1 and if-2 state that if either branch p1
or branch p2 output a trace l under status s, then program if(⋆) {p1} else {p2}
outputs a trace l under status s. Finally, the loop is governed by three rules.
Rule loop-1 (akin to Rule skip) states that a loop can terminate and in that
case we have an empty trace [] and the status is ongoing. Rule loop-2 (akin to
Rule seq-1) captures the case where the loop body p outputs trace l and issues
a return. Rule loop-3 (akin to Rule seq-2) captures the case where the loop
body p outputs a trace l1 and the computation continues by ongoing loop(⋆) {p}
with a trace l2.

Example 1. The trace [a, c, a, c] is in the following program, which exercises
a trace that yields from a loop that runs 2 iterations without an early return.

O ⊢ [a, c, a, c] ∈ loop(⋆) {a(); if(⋆) {b(); return} else {c()}}

Example 2. The trace [a, c, a, b] is in the same program, which highlights the
case where the loop runs for one iteration and in the second iteration returns.

R ⊢ [a, c, a, b] ∈ loop(⋆) {a(); if(⋆) {b(); return} else {c()}}

Definition 1 (Behavior). Let L(p) = {l | s ⊢ l ∈ p} denote the behavior of
program p.

Behavior inference. We now introduce the process of extracting the pro-
gram’s behavior as a regular expression. Let r denote a regular expression,
defined as follows.

r ::= ϵ | ∅ | f | r · r | r + r | r⋆

where ϵ denotes the empty string, ∅ denotes the empty set, f denotes a set only
containing f , r · r denotes set concatenation, r + r denotes set union, and r⋆

denotes the Kleene-star operator. Function [[p]] = (r, s) takes a program p and
outputs a pair that holds a regular expression r of the ongoing behavior and a set
of returned behaviors s, where s is a finite set of regular expressions. Intuitively,
the inference’s output captures the two kinds of status: the first component r
represents O ⊢ l ∈ p, and the second component s represents R ⊢ l ∈ p. The case
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for f() yields regular expression f and no returned behaviors. The case for skip
yields ϵ and no returned behaviors. The case for return is more interesting: the
function yields ∅ so that no behavior can ensue the return, and the empty string
in the set of returned behaviors arises from R ⊢ [] ∈ return in Rule ret. The
case for p1; p2 the s1 on the right-hand side of the output is due to any early
return of p1 (Rule seq-1); the r1 · r2 on the left-hand side and {r1 · r | r ∈ s2}
capture the behavior of program p1 without early returns (Rule seq-2). The
conditional is represents the union of behaviors. The case for loop returns the
Kleene-star of the left-hand side the behavior r1 of p without early returns; on
the right-hand side the function prepends zero or more iterations of r1 followed
by the behavior of each early return r. Finally, infer(p) merges the running and
all the halted behaviors.
Example 3. We can now translate the program used in Examples 1 and 2.

[[loop(⋆) {a(); if(⋆) {b(); return} else {c()}}]] =

(
(
a · ((b · ∅) + c)

)⋆
, {
(
a · ((b · ∅) + c)

)⋆ · a · b})

Theorem 1 (Soundness). If l ∈ L(p), then l ∈ infer(p).

Proof. To establish this result, we must first show the following lemma (1). If
[[p]] = (r, s) and O ⊢ l ∈ p, then l ∈ r. The proof follows by induction on the
derivation of O ⊢ l ∈ p.

Next, we show (2) that if [[p]] = (r, s) and R ⊢ l ∈ p, then there exists an r′ ∈ s
and l ∈ r′. The proof follows by induction on the derivation of R ⊢ l ∈ p. The
interesting cases are Rule seq-1 and Rule loop-3, which require lemma (1).

Our goal is to show that l ∈ infer(p) = l ∈ r + r′1 + · · · + r′n where s =
{r′1, . . . , r′n} and [[p]] = (r, s). Given our assumption l ∈ L(p), then there are
two cases to consider. Case O ⊢ l ∈ p, then we apply (1), and obtain that l ∈ r,
hence l ∈ r + r′1 + · · ·+ r′n.

Case R ⊢ l ∈ p, then we apply (2) to know that there exists an r′ ∈ s and
l ∈ r′. Given assumption l ∈ r′, then by induction on the structure of s we can
derive that l ∈ r + r′1 + · · ·+ r′n.

Theorem 2 (Completeness). If l ∈ infer(p), then l ∈ L(p).

Proof. The proof follows the same structure of Theorem 1. We show (1): If
[[p]] = (r, s) and l ∈ r, then O ⊢ l ∈ p. The proof follows by induction on the
derivation of l ∈ r.

Next, we show (2) that if [[p]] = (r, s), r′ ∈ s, and l ∈ r′, then R ⊢ l ∈ p.
The proof follows by induction on the structure of p. The interesting cases
are sequence, and loop, both of which require the use of (1). To conclude the
case for loop we also require an auxiliary result: if O ⊢ l1 ∈ loop(⋆) {p} and
s ⊢ l2 ∈ p, then s ⊢ l1 · l2 ∈ loop(⋆) {p}.

We have that l ∈ infer(p) ≡ l ∈ r+ r′1 + · · ·+ r′n where s = {r′1, . . . , r′n} and
[[p]] = (r, s). We must show that ∃s such that s ⊢ l ∈ p. By induction on the
output of infer(p) we can show that either l ∈ r or there exist r′ such that r′ ∈ s
and l ∈ r′. For the former we use (1) and for the latter we use (2).
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Our main theoretical result is the correctness of our extraction process (func-
tion infer(p), which states that the behavior of a program is a regular language.

Corollary 1. We have that L(p) is a regular language.

Proof. L(p) is regular since infer(p) recognizes L(p).

4 Related work

There have been different approaches to model check programming languages.
Regarding C++, several tools focus on memory safety issues and specific fea-
tures such as exception handling [41, 8, 14, 6]. Some tools analyze an inter-
mediate language, e.g., LLVM [23, 52, 1] but then face the challenge of los-
ing context information. In [5], authors present a comparative evaluation of
fully automatic software verifiers for C and Java [35, 15, 30, 44]. In particu-
lar, Java PathFinder [27] is a very well-known tool in this domain. For Lustre:
JKind [24, 30]. For Python: MSVL [49]. Domain-specific languages that can be
verified for correctness include P [20, 21], Rebeca [50], and synchronous reactive
languages[4, 29, 3]

Utilizing Finite State Machines (FSMs) for program behavior modeling is
a prevalent approach. For instance, in [54], the authors suggest a technique
for extracting finite-state models of object-oriented class interfaces automat-
ically and they check whether the program exhibits the expected behavior.
VeriSolid [43, 40] applies formal methods to verify smart contracts specified
as transition-systems, and includes a visualization tool. JavaBIP [9] is a frame-
work that uses annotations directly on Java code in order to coordinate existing
concurrent software components.

Typestates [51, 25] refine the concept of type with information about which
operations can be used in a particular context. Multiple authors apply type-
states to general-purpose programming languages [36, 22, 53, 11]. Shelley ex-
plores a similar notion but from a modeling checking perspective; moreover
typestates are based on state-change, rather than on call ordering constraints.

5 Conclusion and Future Work

In this paper, we present the inference of Shelley specifications from MicroPy-
thon classes, which are used in the context of model checking. The inference
process consists of three steps: method dependency extraction, method behavior
extraction, and method invocation analysis. Our main contribution is formaliz-
ing and establishing the correctness of method behavior extraction that specifies
the behavior of a small imperative calculus as a regular language.
Future work. Shelley delegates the actual model checking to NuSMV [13],
by implementing a translation from a nondeterministic finite automaton (NFA)
into a NuSMV model. Our approach is essentially to encode a regular-language
as a ω-regular language. We would like to evaluate other approaches that work
directly in regular-languages, such as [19] and [33].
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