
Coordinating phased activities
while maintaining progress

Tiago Cogumbreiro, Francisco Martins, and Vasco Thudichum Vasconcelos

LaSIGE, Faculty of Sciences, University of Lisbon

Abstract. In order to develop reliable applications for parallel ma-
chines, programming languages and systems need to provide for flexi-
ble parallel programming coordination techniques. Barriers, clocks and
phasers constitute promising synchronisation mechanisms, but they ex-
hibit intricate semantics and allow writing programs that can easily
deadlock. We present an operational semantics and a type system for a
fork/join programming model equipped with a flexible variant of phasers.
Our proposal allows for a precise control over the maximum number of
synchronisation steps each task can be ahead of others. A type system
ensures that programs do not deadlock, even when they use multiple
phasers.

1 Introduction

The key to develop scalable parallel applications lies in using coordination mech-
anisms at the “right” level of abstraction [8]. Rather than re-inventing the wheel
with ad hoc solutions [20], programmers should resort to off-the-shelf coordina-
tion mechanisms present in programming languages and systems. Barriers, in
their multiple forms [1,5,6,7,9,11,14] constitute one such coordination mecha-
nism. A barrier allows multiple tasks to synchronise at a single point, in such a
way that: a) before synchronisation no task has crossed the barrier, and b) after
synchronisation all tasks have crossed the barrier.

Programs that use a single barrier to coordinate all their tasks do not dead-
lock. If using a single barrier may reveal itself quite limited in practice, groups
of tasks that use multiple barriers may easily deadlock. To address this issue,
the X10 programming language [7] proposes clocks, a deadlock-free coordination
mechanism. Clocks later inspired primitives in other languages, such as Java [13]
(as of version 7), Habanero Java [17] (HJ), and an extension to OpenMP [18].

For some applications, the semantics of traditional barriers is overly inflexible.
With this mind, Shirako et al. introduced phasers [17], a primitive that allows
some tasks to cross the barrier before synchronisation, thus relaxing condition a)
above. Phasers allow for asymmetric parallel programs, including multiple pro-
ducer/single consumer applications where, at each iteration, the consumer waits
for the producers to cooperate in assembling an item. In a different direction,
Albrecht et al. proposed a partial barrier construct [3] that only requires some
tasks to arrive at the barrier, thus relaxing condition b). This form of barriers

can be used in applications that synchronise on a subset of all tasks, allowing,
e.g., computation to progress quickly even when in presence of slow tasks.

Reasoning about such enriched constructs is usually far from trivial: the se-
mantics is intricate and most languages lack a precise specification (including
Java barriers and HJ phasers). In this work we propose a calculus for a fork/join
programming model that unifies the various forms of barriers, including X10
clocks [7], HJ phasers (both bounded [16] and unbounded [17]), and Java barri-
ers [13].

Our proposal not only subsumes those of X10, HJ and Java, but further
increases the flexibility of the coordination mechanism. We allow tasks to be
ahead of others up to a bounded number of synchronisation phases, and yet
guarantee that well-typed programs are deadlock free. In contrast, HJ allows
tasks to be ahead of others by an arbitrary number of phases, which is of limited
interest, since fast tasks may eventually exhaust computational resources, such
as buffer space.

To summarise, our contributions are:

– a flexible barrier construct that allows for a precise control over the maximum
number of phases each task can be ahead of others;

– an operational semantics for a fork/join programming model that captures
barrier-like coordination patterns found in X10, HJ, and Java;

– a type system that ensures progress, hence the absence of deadlocks, in
addition to the usual type preservation.

The paper is organised as follows. The next section addresses related work.
Section 3 presents the syntax and the operational semantics of our language.
Thereafter, we introduce the type system and the main results of our work.
Section 5 concludes the paper while putting forward lines of future research.

2 Related work via an example

Figure 1a sketches a parallel breadth-first search algorithm to find an exit in a
labyrinth. The algorithm uses two groups of tasks: one traverses the labyrinth
(modelled by a graph) and another inspects the visited nodes for an exit. The
sketch was originally implemented in OpenMP by Süß and Leopold [19]. The
algorithm proceeds iteratively, handling at each step (or phase) all nodes at
the same depth. If a node is an exit, the algorithm terminates; otherwise it
computes the node’s neighbours and places them in a buffer to be processed in
a later phase. The tasks synchronise at the end of each phase.

Figure 1b depicts two execution states for phases i and i + 1. At phase i,
tasks t1, . . . , tN read nodes from buf 1 (that stores the nodes of depth level i),
compute their descendants, and then in buf 2 (via function traverseNodes()).
Tasks c1, . . . , cM read nodes from buf 1 and look for an exit node (function
checkNodesForAnExit()). Both groups of tasks synchronise (at phaser c) and ad-
vance to phase i + 1. Notice that at phase i + 1 the tasks c1, . . . , cM continue
to process buf 1, while the traversal group t1, · · · , tN is handling nodes at depth

1 finish (
2 let t = newPhaser 0 in
3 let c = newPhaser 0 in (
4 for (int j=0; j<N; j++)
5 async {c:K, t:0} (
6 while(!exitFound) (
7 traverseNodes();
8 arrive c; arrive t; awaitAll);
9 drop c; drop t);

10 drop t;
11 for (int j=0; j<M; j++)
12 async {c:0} (
13 while(!exitFound) (
14 arrive c; awaitAll;
15 checkNodesForAnExit());
16 drop c)
17 drop c)
18) // join task created in lines 5,12

(a) Algorithm

barrier
phase i+1

task t1 task tN...

phase i

buf 1 buf 2 buf 3

task c1 task cM...

task t1 task tN...

buf 1 buf 2 buf 3

task c1 task cM...

(b) Execution diagram (K=2)

Fig. 1: A parallel breadth-first search algorithm.

level i + 1 (buf 2). This situation is possible due to the bound K assigned to
phaser c upon launching the traversal tasks (line 5). Bound K denotes the num-
ber of phases the traversal tasks may be ahead of the checker tasks. The number
of buffers is equal to K + 1.

The synchronisation of tasks is challenging and involves phasers c and t.
Phaser c is used to synchronise traversal tasks with checker tasks, while the
traversal tasks further synchronise among themselves at phaser t. The bound c:K
in line 5 reads as “phaser b has bound K in the spawned task.” On the other
hand, bound t:0 (also in line 5) means that the traversal activities must all be
in the same phase. This synchronisation scheme ensures that the traversal tasks
must process all nodes at the same depth and only after that advance to the
next level. The traversal tasks set the pace for the checker tasks with phaser c.
In their turn, the checker tasks (lines 12–16) use bound c:0, thus enforcing that
they simultaneously process the same depth level and do not overtake the tasks
in the traversal group.

Barriers, clocks, and phasers are insufficient for this sort of coordination.
Barriers and clocks are too inflexible, since no task can cross the barrier before
the others arrive. HJ phasers are too loose, since when not used as barriers,
tasks run unconstrained and may overflow buffers. Phasers beams [16] are a step
towards this sort of control, but its semantics is only informally described and
they do not guarantee deadlock-freedom. Our proposal permits different tasks
to specify the maximum number of phases they can be ahead of the slowest.

In contrast, phaser beams define such a number on a per-phaser basis. To unify
regular phasers and phaser beams, we also supply an operation that skips waiting
on a phase.

Saraswat and Jagadeesan presented a calculus for the X10 language that
includes barriers, fork/join, conditional atomic blocks, and hierarchical shared
memory [15]. The authors define a small-step operational semantics and claim
that X10 programs without conditional atomic blocks do not deadlock, yet no
deadlock-freedom theorem is formally proved. Lee and Palsberg present a calcu-
lus, called FX10, with two constructs from X10: fork/join and atomic blocks [10].
FX10 is suited for inter-procedural analysis through type inference and includes
a formal proof of a fragment of the deadlock theorem stated by Saraswat and
Jagadeesan. The type system used to identify may-happen-parallelism is further
explored in [2]. Other formal studies on fork/join semantics include [1,4]. Our
previous work defines an operational semantics and a type system for a calculus
with a fork/join programming model and clocks [12], but does not include a
deadlock-freedom theorem.

X10 clocks and HJ phasers are language-based approaches, whereas the Java
barrier (also called phaser) is a library-based approach. Features that appear si-
multaneous in our calculus, in X10, and in HJ are: controlled barrier registration
to avoid non-determinism, advancement on multiple barriers, and enforced bar-
rier deregistration before activity termination to avoid barrier-related deadlocks.
Features that appear in our calculus and in HJ alone include phaser visibility
restricted to finish scopes to avoid deadlocks between phaser and finish; enforced
deregistration before terminating a finish to avoid deadlocks between barriers.
HJ and X10 automatically deregister from barriers when activities terminate.
Instead we require explicit operations on phasers, in order to obtain a clearer
operational semantics. Our type system provides enough information to guide
a compiler into automatically inserting such operations, if desired. Finally, the
ability to specify the maximum number of phases a task may be ahead of the
slowest is unique to our language.

3 Syntax and operational semantics

Our language, inspired by X10 and HJ, uses activities to organise independent
computations and features two coordination mechanisms to control concurrency:
phaser and finish. For the sake of simplicity, the language focuses on task coor-
dination, providing very little in the way of describing complex computations.

The syntax of the language is defined in Figure 2. It relies on a base set of
variables, ranged over by x, and a set of natural numbers, ranged over by m
and n. Bounds B map phaser names to the phaser bounds. We use the standard
abbreviation t; e to denote the expression let x = t in e when variable x does
not occur in expression e. A term t is transformed into an expression via let x =
t in x. We describe the language constructs along with the presentation of the
operational semantics.

e ::= Expressions

v value

| let x = t in e local declaration

v ::= Values

x variable

| n natural number

| () unit

B ::= Bounds

∅ empty

| B] {v : v} bound

t ::= Terms

e expression

| newPhaser v new phaser, bounded by v

| drop v deregister from phaser v

| arrive v arrive at phaser v

| awaitAll await on registered phasers

| skipAll skip phase on all phasers

| async B e fork an activity

| finish e wait for termination

Fig. 2: The syntax of expressions.

S ::= 〈〈〈〈〈Q;A〉〉〉〉〉 States

Q ::= ∅ | Q] {h : P} Phaser maps

P ::= ∅ | P] {l : r} Phasers

r ::= 〈n; s〉 Local views

A ::= ∅ | A] {l : a} Activity maps

a ::= 〈B; e〉 | 〈S;B; e〉 Activities

v ::= . . . | h Values

s ::= un | ar Arrival status

Fig. 3: The syntax states.

Figure 3 introduces the syntax of a machine state. The run-time system relies
on two additional disjoint sets, H and L. Set H contains phaser names, ranged
over by h. Activity names, l, are taken from set L. A state S of a computation
comprises a shared phaser map Q and an activity map A. Each phaser map Q
stores the available phasers, mapping phaser names to phasers. A phaser maps
activity names to local views. A local view consists of the phase n the activity
is in and an arrival status s set to ar when the activity arrives at the phaser.
An activity map A maps activity names l to activities a. There are two kinds of
activities: regular activities 〈B; e〉 consist of the bound for each phaser the activ-
ity is registered with, and an expression e; finish activities 〈S;B; e〉 additionally
include a state S comprising the activities spawned within a finish instruction.
Given any map, say X, we write domX for the domain of X and rangeX for
the co-domain of X. In a map X]{x : u} we assume x does not occur in domX.

Figure 4 introduces a small step reduction relation on states, S1 → S2, cap-
turing the non-deterministic choice of which activity to evaluate next. Auxil-
iary functions and predicates are in Figure 5. The phaser creation instruction,
newPhaser n, evaluates to a fresh phaser name h; it also registers under h the
current activity l with a local view composed of bound n and phase 0. All other
phaser-related operations evaluate to (). Activities deregister from a phaser h
via an expression drop h, thus removing the local view from the phaser. Instruc-

h 6∈ domQ

〈〈〈〈〈Q ;A] {l : 〈B; let x = newPhaser n in e〉}〉〉〉〉〉
→ 〈〈〈〈〈Q] {h : {l : 〈0; un〉}} ;A] {l : 〈B] {h : n}; let x = h in e〉}〉〉〉〉〉

(R-phaser)

〈〈〈〈〈Q] {h : (P] {l : })} ;A] {l : 〈B] {h : }; let x = drop h in e〉}〉〉〉〉〉
→ 〈〈〈〈〈Q] {h : P} ;A] {l : 〈B; let x = () in e〉}〉〉〉〉〉 (R-drop)

〈〈〈〈〈Q] {h : (P] {l : 〈n; un〉)}} ;A] {l : 〈B; let x = arrive h in e〉}〉〉〉〉〉
→ 〈〈〈〈〈Q] {h : (P] {l : 〈n; ar〉)}} ;A] {l : 〈B; let x = () in e〉}〉〉〉〉〉 (R-arrive)

unblocked(Q, l, B)

〈〈〈〈〈Q ;A] {l : 〈B; let x = awaitAll in e〉}〉〉〉〉〉
→ 〈〈〈〈〈commit(l, Q) ;A] {l : 〈B; let x = () in e〉}〉〉〉〉〉

(R-await)

〈〈〈〈〈Q ;A] {l : 〈B; let x = skipAll in e〉}〉〉〉〉〉
→ 〈〈〈〈〈commit(l, Q) ;A] {l : 〈B; let x = () in e〉}〉〉〉〉〉 (R-skip)

l2 6∈ domA ∪ domB1 ∪ domB2

〈〈〈〈〈Q ;A] {l1 : 〈B1; let x = async B2 e2 in e1〉}〉〉〉〉〉
→ 〈〈〈〈〈copy(l1, l2, domB2, Q) ;A] {l1 : 〈B1; let x = () in e1〉}]{l2 : 〈B2; e2〉}〉〉〉〉〉

(R-async)

l2 6∈ domA ∪ domB

〈〈〈〈〈Q;A] {l1 : 〈B; let x = finish e1 in e2〉}〉〉〉〉〉
→ 〈〈〈〈〈Q;A] {l1 : 〈〈〈〈〈〈∅; {l2 : 〈∅; e1〉}〉〉〉〉〉;B; let x = () in e2〉}〉〉〉〉〉

(R-finish)

S1 → S2

〈〈〈〈〈Q;A] {l : 〈S1;B; e〉}〉〉〉〉〉 → 〈〈〈〈〈Q;A] {l : 〈S2;B; e〉}〉〉〉〉〉 (R-activity)

halted(S)

〈〈〈〈〈Q;A] {l : 〈S;B; e〉}〉〉〉〉〉 → 〈〈〈〈〈Q;A] {l : 〈B; e〉}〉〉〉〉〉 (R-join)

〈〈〈〈〈Q;A] {l : 〈B; let x = v in e〉}〉〉〉〉〉 → 〈〈〈〈〈Q;A] {l : 〈B; e[v/x]〉}〉〉〉〉〉 (R-let)

〈〈〈〈〈Q;A] {l : 〈B; let x = (let y = e1 in t) in e2〉}〉〉〉〉〉
→ 〈〈〈〈〈Q;A] {l : 〈B; let y = e1 in (let x = t in e2)〉}〉〉〉〉〉 (R-unfold)

Fig. 4: Small step semantics for states, S → S.

tion arrive h marks the local view of activity l as arrived, ar. An activity can
only arrive once per phase.

Instruction awaitAll waits until activity l becomes unblocked. The current
phase of a phaser is the natural number corresponding to the smallest local view
among all activities registered in the phaser (Figure 5). An activity l is unblocked
when it has arrived at all phasers and each bound allows progress (i.e., the bound
is larger than the difference between the current phase and the phaser’s phase).
For each phaser activity l is registered with, rule R-await advances the phase
and sets the arrival status back to un, via function commit(l, Q). HJ and X10
implicitly arrive at all non-arrived barriers before advancing.

Expression skipAll simply advances the phase and does not wait for other
activities. This operation can be used to let an activity use a phaser repeat-
edly without waiting for others. Spawning a new activity with rule R-async

Phase function for local views, phase(r) = n:

phase(〈n; un〉) = n phase(〈n; ar〉) = n+ 1

Phase partial function for phasers, phase(P) = n:

phase(P) = min{phase(r) | r ∈ rangeP}

Unblocked predicate, unblocked(Q, l, B): unblocked(Q, l, ∅)

unblocked(Q, l, B) Q(h) = P P (l) = 〈n; ar〉 m > n− phase(P)

unblocked(Q, l, B] {h : m})

Phase commit partial function, commit(l, Q) = Q:

commit(l, Q] {h : P] {l : 〈n; ar〉}}) = commit(l, Q)] {h : P] {l : 〈n+ 1; un〉}}
l /∈ domP

commit(l, Q] {h : P}) = commit(l, Q)] {h : P} commit(l, ∅) = ∅

Local view copy partial function, copy(l1, l2, H,Q) = Q:

h ∈ H P (l1) = r

copy(l1, l2, H,Q] {h : P}) = copy(l1, l2, H,Q)] {h : P] {l2 : r}}
h /∈ H

copy(l1, l2, H,Q] {h : P}) = copy(l1, l2, H,Q)] {h : P} copy(l1, l2, H, ∅) = ∅

Halted state predicate, halted(S): halted(〈〈〈〈〈Q; {l1 : 〈∅; v1〉, . . . , ln : 〈∅; vn〉}〉〉〉〉〉)

Fig. 5: Phaser-related functions and predicates.

evaluates expression e concurrently, by augmenting the activity map with a
new activity 〈B2; e〉. For each phase in bounds B2, we copy the local views
from the spawning activity l1 to the spawned activity l2, as captured by func-
tion copy(l1, l2, H,Q), where H is a set of phaser names, defined in Figure 5.
Spawned activities inherit the arrival statuses, for otherwise, depending on the
order of reduction of the spawning and spawned activities, the spawned activity
may or may not participate in the synchronisation of the current phase, inducing
an undesirable non-determinism in the phaser semantics [12].

Rule R-finish evaluates expressions of the form let x = finish e1 in e2 by
suspending expression let x = () in e2 and by evaluating e1 in a newly created
state. The finish activity (a triple as in Figure 3) holds a state (comprising an
empty phaser map and an activity 〈∅; e1〉 that is not registered on any phaser),
the current bounds B, and the suspended expression let x = () in e2. Such
an activity will then reduce, via rule R-activity, until halted (a predicate
introduced in Figure 5). Then, the suspended activity resumes execution by
means of rule R-join.

The evaluation of let-expressions is standard. Rule R-let replaces variable x
by value v in continuation e. Nested let bindings are unfold with rule R-unfold.

We complete this section with a pair of examples leading to deadlocks, thus
motivating the need for the type system in the next section. An activity that,
before terminating, does not deregister from every phaser it is registered with will
cause every activity that synchronises with that phaser to deadlock. Consider a
program composed of two activities. Activity l1 creates a phaser x (line 2) and in
the subsequent line spawns an activity l2 also registered with x; the latter activity
does nothing (not even deregisters from phaser x). Activity l1 synchronises and
deadlocks at line 5, forever waiting for activity l2 to arrive.

1 // activity l1
2 let x = newPhaser 0 in
3 async {x:0} (); // forgets drop x
4 arrive x;
5 awaitAll // l1 deadlocks here

Listing 1.1: An activity that for-
gets to deregister from a phaser.

The deadlocked state:

〈〈〈〈〈{h : {l1 : 〈0; ar〉, l2 : 〈0; un〉}};
{l1 : 〈{h : 0}; let w = awaitAll in w〉,
l2 : 〈{h : 0}; ()〉}, }〉〉〉〉〉

An activity that forgets to arrive before awaiting other activities deadlocks
itself and the remaining participants in the synchronisation. In the next program,
activity l1 creates a phaser x and spawns activity l2 that simply arrives at x
(line 4) and awaits for l1 (line 5). Activity l1 forgets to arrive at x but still
awaits (line 6) and therefore deadlocks along with activity l2 (in line 5).

1 // activity l1
2 let x = newPhaser 0 in
3 async {x:0} (// activity l2
4 arrive x;
5 awaitAll); // l2 deadlocks here
6 awaitAll // l1 deadlocks here

Listing 1.2: An activity that for-
gets to arrive at a phaser.

The deadlocked state:

〈〈〈〈〈{h : {l1 : 〈0; un〉, l2 : 〈0; ar〉}};
{l1 : 〈{h : 0}; let w = awaitAll in w〉,
l2 : 〈{h : 0}; let z = awaitAll in z〉}〉〉〉〉〉

4 Type system and results

This section introduces our type system and its main results, namely type preser-
vation and progress for typable states.

We rely on a set of type variables, ranged over by α. The syntax of types
is defined by the grammar in Figure 6, and include those for the unit constant,
unit, for the natural numbers, nat, and for phasers, α. We assign a different (sin-
gleton) type α to each phaser, in order to track how phasers are used throughout
the program. The type system for our programming language is also defined in
Figure 6. Typings Γ are maps from variables and phaser names to types. Arrival
maps Φ map type variables (singleton phaser types) into arrival status. The re-

The syntax of types:
τ ::= unit | nat | α

Well-formed types, Φ ` τ :

Φ ` unit Φ ` nat Φ,α : s ` α (T-wf-u, T-wf-n, T-wf-p)

Typing rules for bounds, Γ ;Φ ` B : Φ:

Γ ;Φ1 ` B : Φ2 Γ ;Φ1 ` v1 : α Γ ;Φ1 ` v2 : nat

Γ ;Φ1 ` (B] {v1 : v2}) : (Φ2] {α : Φ1(α)}) Γ ;Φ ` ∅ : ∅

(T-bound-cons,T-bound-nil)

Typing rules for values, Γ ;Φ ` v : τ :

Γ ;Φ ` () : unit Γ ;Φ ` n : nat
Γ (v) = τ Φ ` τ

Γ ;Φ ` v : τ
(T-unit, T-nat, T-val)

Typing rules for terms and for expressions, Γ ;Φ ` t : (τ, Φ) and Γ ;Φ ` e : (τ, Φ):

Γ ;Φ ` v : nat α 6∈ domΦ

Γ ;Φ ` (newPhaser v) : (α,Φ] {α : un}) (T-phaser)

Γ ;Φ] {α : s} ` v : α

Γ ;Φ] {α : s} ` (drop v) : (unit, Φ)

Γ ;Φ] {α : un} ` v : α

Γ ;Φ] {α : un} ` (arrive v) : (unit, Φ] {α : ar})
(T-drop,T-arrive)

Γ ; {α1 : ar, . . . , αn : ar} ` awaitAll : (unit, {α1 : un, . . . , αn : un}) (T-await)

Γ ; {α1 : ar, . . . , αn : ar} ` skipAll : (unit, {α1 : un, . . . , αn : un}) (T-skip)

Γ ;Φ1 ` B : Φ2 Γ ;Φ2 ` e : (, ∅)
Γ ;Φ1 ` (async B e) : (unit, Φ1)

Γ ; ∅ ` e : (τ, ∅)
Γ ;Φ ` (finish e) : (unit, Φ)

(T-async,T-finish)

Γ ;Φ ` v : τ

Γ ;Φ ` v : (τ, Φ)

Γ ;Φ1 ` e1 : (τ1, Φ2) Γ] {x : τ1};Φ2 ` e2 : (τ2, Φ3)

Γ ;Φ1 ` (let x = e1 in e2) : (τ2, Φ3)
(T-value,T-let)

Fig. 6: The syntax of types and the typing rules.

lation for well-formed types Φ ` τ ensures that activities only make use of the
phasers they are registered with.

The typing rules for bounds Γ ;Φ1 ` B : Φ2 assign an arrival map Φ2 to
bounds B, under a context consisting of a typing Γ and an arrival map Φ1.
Rule T-bound-cons ensures that B maps phasers into natural numbers, and
also that it holds distinct phasers. The fact that phasers are associated to sin-
gleton types enables us to track aliasing in bounds.

The typing rules for values Γ ;Φ ` v : τ are straightforward. Rule T-val
asserts that the value, either a variable or a phaser name, must be in typing Γ
and that its type well formed.

For expressions we define a type and effect system Γ ;Φ1 ` e : (τ, Φ2) stating
that expression e is of type τ and effect Φ2. The effects are important to track

the changes in the arrival map, forced by the evaluation of an expression. The
type of a newPhaser term is a new singleton type α that is also introduced in
the effect. All remaining terms are of type unit. The effect a drop v term is
the incoming arrival map from which α was removed, so that value v cannot be
further used (cf. rule T-val). Rule T-arrive ensures that activities can arrive
at phaser α only once, by requiring that the phaser’s arrival status is un and by
changing it into ar.

Terms awaitAll and skipAll mark the end of a phase: the rules check that all
phasers have arrived and then reset the phasers to un. For example, in line 6 of
Listing 1.2, activity l1 does not arrive at x, so we must type the term awaitAll
under a typing {x : α} and an arrival map {α : un} which does not succeed
according to rule T-await.

In rule T-async, the spawned activity e is checked against an arrival map Φ2

for the phasers in B. Furthermore, e must deregister from all its phasers before
terminating (hence the empty effect for e). The effect of the finish itself is the
incoming phaser map, so that the spawning activity inherits the arrival status of
the phasers. For example, we reject the program in Listing 1.1, since the spawned
activity does not drop all its phasers before terminating. In fact, the empty task
in line 3 must be typed under context {x : α} and phaser map {α : un}, but the
arrival map is not empty for the unit term ().

Rule T-finish also forces e to deregister from all the phasers it has created,
and therefore finish e has no effect on the arrival map Φ. In order to avoid
deadlocks, we prevent e from accessing any existing phaser, thus eliminating
(nested) dependencies between phasers and finish. The typing rule for let is
standard.

The typing rules for states are introduced in Figure 7. We rely on a set of
activity names Λ, a phase difference map ∆ mapping pairs of activity names
to integer values (not necessarily natural numbers), and a phase difference tree
map Σ mapping activity names to pairs composed of a phase difference map (for
the root activity) and a phase difference tree map (for the children activities,
if any). A state 〈〈〈〈〈Q;A〉〉〉〉〉 can be seen as a set of activity trees, the trees in A.
Regular activities 〈B; e〉 are leaf nodes, whereas finish activities 〈S;B; e〉 are
internal nodes whose children are the activities in S. When type checking a
state, the topology of the phase difference tree Σ matches that of the activity
tree.

We use ∆ ` P to check that the difference of phases between activities li
and lj are recorded in ∆(li, lj), for any pair li, lj registered with P . Judge-
ment Γ `l Q : Φ collects the arrival statuses of every phaser activity l is registered
with. Judgement ∆;Λ ` Q : Γ checks the phase difference and the registered ac-
tivity names for each phaser in Q, while building a context Γ for Q.

We have two rules for activities. For regular activities, rule T-act ensures
that the bounds B and the arrival map Φ mentions the same phasers, while
ensuring that expression e deregisters from all phasers when before terminating
(the effect of typing the expression is the empty arrival map). For finish activities,
rule T-f-act ensures that both the state S and the finish continuation 〈B; e〉 are

Phase difference for phasers, ∆ ` P :

∆(li, lj) = ni − nj ∀1 ≤ i, j ≤ k
∆ ` {l1 : 〈n1; 〉, . . . lk : 〈nk; 〉} (T-dif)

Arrival map of a phaser map, Γ `l Q : Φ:

Γ `l Q : Φ Γ (h) = α P (l) = 〈 ; s〉
Γ `l (Q] {h : P}) : (Φ] {α : s})

Γ `l Q : Φ l /∈ domP

Γ `l (Q] { : P}) : Φ
Γ `l ∅ : ∅

(T-ar-cons,T-ar-skip,T-ar-nil)

Typing context of a phaser map, ∆;Λ ` Q : Γ :

α 6∈ rangeΓ domP ⊆ Λ ∆ ` P ∆;Λ ` Q : Γ

∆;Λ ` (Q] {h : P}) : (Γ] {h : α}) ∆;Λ ` ∅ : ∅

(T-pm-cons,T-pm-nil)

Typing rules for activities, ∆;Σ;Γ ;Φ ` a:

Γ ;Φ ` B : Φ Γ ;Φ ` e : (, ∅)
∅; ∅;Γ ;Φ ` 〈B; e〉

∆;Σ ` S ∅; ∅;Γ ;Φ ` 〈B; e〉
∆;Σ;Γ ;Φ ` 〈S;B; e〉

(T-act,T-f-act)

Typing rules for activity maps, Σ;Γ `Q A:

Γ `l Q : Φ ∆1;Σ1;Γ ;Φ ` a Σ;Γ `Q A

Σ] {l : 〈∆1;Σ1〉};Γ `Q A] {l : a} ∅;Γ `Q ∅

(T-am-cons,T-am-nil)

Typing rule for states, ∆;Σ ` S:
∆; domA ` Q : Γ Σ;Γ `Q A

∆;Σ ` 〈〈〈〈〈Q;A〉〉〉〉〉 (T-state)

Fig. 7: Typing rules for states

well typed. To type check a state ∆;Σ ` 〈〈〈〈〈Q;A〉〉〉〉〉, rule T-state uses the activity
names in A and the phase difference ∆ to type check the phaser map Q; it also
checks that the activity map A is well typed according to the phase difference
tree Σ.

We complete this section by presenting the main results of the paper.

Lemma 1. If Σ] {l : 〈∆1;Σ1〉};Γ `Q A] {l : a}, then there exists Φ such that
Γ `l Q : Φ, ∆1;Σ1;Γ ;Φ ` a, and Σ;Γ `Q A.

Theorem 1 (Subject reduction). If ∆1;Σ1 ` S1 and S1 → S2, then there
exists ∆2 and Σ2 such that ∆2;Σ2 ` S2.

Proof (Sketch). The proof follows by induction on the derivation of the reduction
step. In each case we have to exhibit ∆2 and Σ2. For R-phaser we make use of a
weakening lemma. Cases R-drop, R-arrive, R-await, R-skip, and R-async
are similar. We prove that changes made in the phaser map after reduction have
no effect on any activity besides the one under reduction. When the derivation

of the reduction step ends with rule R-activity, we know that Σ1 = Σ]
{l : 〈∆′

1;Σ′
1〉}; by induction it follows that ∆′

2;Σ′
2 ` S2. We take ∆2 = ∆1 and

Σ2 = Σ] {l : 〈∆′
2;Σ′

2〉}. We apply Lemma 1 to the hypothesis to, and the
induction hypothesis to complete the proof. Case R-join, and R-unfold are
similar to R-activity. For R-finish, we know that Σ1 = Σ] {l1 : 〈∅; ∅〉}; we
take ∆2 = ∆1 and Σ2 = Σ] {l1 : 〈∅; {l2 : 〈∅; ∅〉}〉}. We use a strengthening
lemma: Γ ; ∅ ` e : (τ, ∅) and Γ only contains phaser names in its domain implies
∅; ∅ ` e : (τ, ∅). Strengthening is applied to the newly created state. For R-let
we need a substitution lemma, strengthening and weakening.

For progress, we start by extracting a total order for the activities in a typable
state.

Lemma 2. If ∆;Σ ` 〈〈〈〈〈Q; 〉〉〉〉〉 then the relation {(l1, l2) | P ∈ rangeQ,P (l1) =
〈n1; 〉, P (l2) = 〈n2; 〉, n1 ≤ n2} is a total order.

Theorem 2 (Progress). If ∆;Σ ` S1 then S1 is either halted(S1) or there is
a state S2 such that S1 → S2.

Proof (Sketch). Activities can block for a number of reasons, easily deduced from
the reduction rules in Figure 4. The cases for drop, arrive, skipAll, async and
let are easily dismissed by a simple analysis of the typing derivation rules. For
example, when the reduction step ends with rule R-async, we must show that
∆;Σ ` 〈〈〈〈〈Q;A] {l1 : 〈B1; let x = async B2 e2 in e1〉}〉〉〉〉〉 and l2 6∈ dom(A,B1, B2)
implies that copy(l1, l2,domB2, Q) is defined. We proceed by induction on the
structure of Q. The interesting case is when Q is Q′] {h : P}, where we must
show that l1 ∈ domP . From ∆;Σ ` S we know that Γ `l1 Q : Φ. By showing
that Γ `l Q : Φ implies domQ = domΓ , we obtain h ∈ domΓ . Then we show
that h ∈ domΓ and Γ `l Q : Φ implies l ∈ domQ(h).

Otherwise suppose that all activities in S1 are blocked at awaitAll. Lemma 2
ensures that there is a total order on activity names. Since the order is total,
there is one activity name that is smaller than all others; let it be l. From
∆;Σ ` 〈〈〈〈〈Q;A] {l : 〈B; let x = awaitAll in e1〉}〉〉〉〉〉, we know that P (l) = 〈m; ar〉,
for some m. We also know that phase(P) = min{n + 1 | 〈n; ar〉 ∈ rangeP} =
1 + min{n | 〈n; ar〉 ∈ rangeP} = 1 + m. Hence l is unblocked and we have
attained a contradiction.

In absence of infinite computations, it follows from the above theorem that
all typable states eventually reach a halted state.

5 Conclusion and further work

We presented a calculus and a type system for a fork/join programming model
with a flexible phaser mechanism. We favour explicit operations, yielding phaser
operators which are simpler than those of Habanero Java [17]. Our proposal
unifies the semantics of clocks [7], regular phasers [17], and phaser beams [16],

but goes further by allowing tasks to be ahead of others by a bounded number
of phases.

HJ permits writing applications where the same task is registered with a
phaser as a regular barrier and with another phaser that disregards all forms
of synchronisation. For such cases, our skipAll operation is not enough. We can
however introduce unbounded local views for tasks registered at phasers with an
infinite bound (tasks that do not want to synchronise, only to influence others).
An expression advance v, available only for activities registered with an infinite
bound, would advance a single phaser. We believe that such an extension can be
easily accommodated in our system.

To focus on the intricacies of synchronisation, we kept our language very
simple. Extensions required for real world programming include provision for
unbounded computations (in the form of recursion or loops) and for a mutable
store (in the form of imperative variables). Loops can be introduced in our
calculus while causing little interference with the model and results, as long as
they preserve an invariant on the registered phasers at every iteration. In order
to build circular buffers of phasers, HJ applications may create phasers within
a loop. A possible workaround to accommodate such a feature in our language
is to introduce a primitive that allocates an array of phasers.

Acknowledgements. This work was partially supported by project PTDC/EIA-
CCO/122547/2010. The first author would like to thank Vivek Sarkar for wel-
coming him at the Habanero group at Rice University, during the year of 2012.
We are grateful to Jun Shirako and anonymous referees for their feedback on
this paper and to Vivek Sarkar for discussions related to phasers.

References

1. S. Aditya, J. E. Stoy, and Arvind. Semantics of barriers in a non-strict, implicitly-
parallel language. In Proceedings of FPCA’95, pages 204–215. ACM, 1995.

2. S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasundar. May-happen-in-parallel
analysis of X10 programs. In Proceedings of PPoPP’10, pages 183–193. ACM, 2007.

3. J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat. Loose synchronization for
large-scale networked systems. In Proceedings of ATEC’06, pages 28–28. USENIX
Association, 2006.

4. Arvind, J.-W. Maessen, R. S. Nikhil, and J. E. Stoy. λs: an implicitly parallel λ-
calculus with letrec, synchronization and side-effects. Electronic Notes Theoretical
Computer Science, 16(3):265–290, 1998.

5. F. R. Barnes, P. H. Welch, and A. T. Sampson. Barrier Synchronisation for occam-
pi. In Proceedings of PDPTA’05, pages 173–179. CSREA Press, 2005.

6. V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java: the new adventures
of old X10. In Proceedings of PPPJ’11, pages 51–61. ACM, 2011.

7. P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform cluster
computing. In Proceedings of OOPSLA’05, pages 519–538. ACM, 2005.

8. C. Cole and R. Williams. Photoshop scalability: Keeping it simple. Queue, 8:20–28,
2010.

9. L. Dagum and R. Menon. OpenMP: An Industry-Standard API for Shared-
Memory Programming. Computing in Science and Engineering, 5(1):46–55, 1998.

10. J. K. Lee and J. Palsberg. Featherweight X10: a core calculus for async-finish
parallelism. In Proceedings of PPoPP’10, pages 25–36. ACM, 2010.

11. D. Leijen, W. Schulte, and S. Burckhardt. The design of a task parallel library. In
Proceeding of OOPSLA’09, pages 227–242. ACM, 2009.

12. F. Martins, V. T. Vasconcelos, and T. Cogumbreiro. Types for X10 Clocks. In
Proceedings of PLACES’10, volume 69 of EPTCS, pages 111–129, 2011.

13. Oracle. Java Specification Request JSR-166, 2002.
14. J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-

cessor Parallelism. O’Reilly Media, 2007.
15. V. Saraswat and R. Jagadeesan. Concurrent clustered programming. In Proceedings

of CONCUR’05, volume 3653 of LNCS, pages 353–367. Springer, 2005.
16. J. Shirako, D. Peixotto, D. Sbirlea, and V. Sarkar. Phaser beams: Integrating

stream parallelism with task parallelism. In X10 Workshop, 2011.
17. J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer. Phasers: a unified

deadlock-free construct for collective and point-to-point synchronization. In Pro-
ceedings of ICS’08, pages 277–288. ACM, 2008.

18. J. Shirako, K. Sharma, and V. Sarkar. Unifying barrier and point-to-point syn-
chronization in OpenMP with phasers. In Proceeding of IWOMP’11, volume 6665
of LNCS, pages 122–137. Springer, 2011.

19. M. Süß and C. Leopold. Implementing irregular parallel algorithms with OpenMP.
In Proceedings of Euro-Par’06, pages 635–644. Springer, 2006.

20. W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad hoc synchronization consid-
ered harmful. In Proceedings of OSDI’10, pages 1–8. USENIX Association, 2010.

	Coordinating phased activities while maintaining progress

