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Phasers pose an interesting synchronization mechanism that generalizes many collective synchro-
nization patterns seen in parallel programming languages, including barriers, clocks, and point-to-
point synchronization using latches or semaphores. This work characterizes scheduling constraints
on phaser operations, by relating the execution state of two tasks that operate on the same phaser.
We propose a formalization of Habanero phasers, May-Happen-In-Parallel, and Happens-Before re-
lations for phaser operations, and show that these relations conform with the semantics. Our formal-
ization and proofs are fully mechanized using the Coq proof assistant, and are available online.

1 Introduction

Phasers are an interesting synchronization mechanism that generalizes barriers with collective producer-
consumer synchronization. A phaser can encode the synchronization mechanism of latches, futures, join
barriers, cyclic barriers, as well as any collective synchronization pattern provided by CUDA, C], Java,
MPI, and X10. Phasers [13] were first introduced in the Habanero Extreme Scale research project at Rice
University, as an extension to X10 clocks [2], and implemented in Habanero-Java and Habanero-C. A
restricted form of phasers was also introduced in the standard java.util.concurrent.Phaser library
starting with Java 7. The phaser synchronization mechanism is relevant at the theoretical level because
of its generality. Theoretical results that target phasers can easily translate across different languages and
parallel runtimes [4].

The phaser synchronization mechanism lets tasks observe a collective event, called phase, which is
visible once every member of a group of tasks signals the phaser exactly once. We define signalers of
the phaser as the group of tasks able to signal a phaser. The same phaser can be used to observe multiple
phases, which are distinguishable by a natural number. A task can observe phase n once each signaler
issues at least n signals. Phaser synchronization also features dynamic membership, that is, the group
of signalers can grow and shrink dynamically: a signaler can add a member, which in turn inherits the
signal count of the task adding it; a signaler can also revoke its membership at any time.

As an example of phaser synchronization, let us consider a group of three tasks, uniquely identified
by t1, t2, and t3, and let this group of tasks be the signalers of phaser P. Also, lets examine a point
in time, with respect to phaser P, where task t1 signaled 3 times, task t2 signaled 4 times, and task t3
signaled 10 times. Tasks can use P to observe any phase below or equal to phase 3, since the signalers
collectively issued at least 3 signals. Conversely, at this point in time, any phase above 3 is not observable,
e.g., for phase 4 to be observed we are missing a signal from task t1. Dynamic membership affects
synchronization: if task t1 adds a task t4 as a signaler of phaser P, then for phase 4 to be observable we
are missing a signal from task t1 and a signal from task t4; and, if, subsequently, tasks t1 and t4 revoke
their membership, then phase 4 is observable.

This paper introduces the first formalization of Habanero phasers and also presents an Happens-
Before (HB) [9] relation and a May-Happen-In-Parallel [6] (MHP) relation for phaser operations, both
of which are fundamental problems for concurrency analysis. MHP and HB characterize scheduling
restrictions between two instruction instances. An example of the HB relation is ordering any instruction

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Formalization of Phase Ordering

t1 t2

sp:0,wp:0 x:=1 signal sp:0,wp:0

sp:0,wp:0 signal y:=2 sp:1,wp:0

sp:1,wp:0 wait wait sp:1,wp:0

sp:1,wp:1 println(y) println(x) sp:1,wp:1

Figure 1: Phase-ordering between two task traces in a program with a race error.

that happened before spawning a task and any instruction in the task body being spawned; MHP can
be defined using the HB relation. MHP and HB analysis are fundamental in the verification of barrier
synchronization errors [12], lock-based deadlock prediction [1, 7], and race-detection [10, 14].

The HB relation we introduce comes from the Phase Ordering definition [13] that relates the execu-
tion state of two tasks manipulating the same phaser: if the number of signals issued by a task (prop-
erty sp) is smaller than the last phase observed by some other task (property wp) then the former task
happened before the latter task. The execution of a program that uses Habanero phasers must respect the
scheduling restriction imposed by Phase Ordering, but how can we be sure that this property holds? The
example in Figure 1 lists the execution trace of two tasks and also includes the sp and wp at each step, for
both tasks, and w.r.t. the same phaser. Tasks increment their sp after signaling, and their wp after waiting.
Note how HB orders instructions at different points in time: the assignment x:=1 by t1 happens before
println(x) by t2, so we can conclude that t2 reads the value written by task t1. Conversely, HB does not
order the write y:=2 by t2 and the read println(y) by t1, so, as read and write are unsynchronized, there is
a data race. The goal of this work is twofold: 1) prove that to schedule phaser-operation across tasks it is
sufficient to compare a task-local property sp of one task with the last global observation wp of another
task; and 2) and prove that the semantics of Habanero phasers respects the Phase Ordering property.

Crafa et al. propose a Coq formalization of a subset of the X10 and define a HB relation in [5], but
only consider fork-join synchronization, and omit dynamic barrier synchronization that we formalize.
Tomofumi et al. use HB and MHP to check for data races in the polyhedral subset of clocked X10
programs [15]. Joshi et al. propose an informal MHP relation for X10 clocks [8].

This paper establishes two main properties with respect to the phasers semantics we introduce. First,
as required by HB and MHP analysis, we show that the HB relation we define is a causality relation [9].
Second, since the HB relation is defined on the state of a phaser P, we show that HB conforms with
the execution semantics of phasers; that is, if a state P reduces to Q after zero or more steps, then Q
cannot happen before P. By targeting phasers, our formalization unifies collective producer-consumer
synchronization [12] and barriers with dynamic membership [8] in a single theoretical framework. Ad-
ditionally, we formalize and establish the correctness of our definitions with proofs verified by the Coq
proof assistant, available online, as part of our HJ-Coq formalization project [3].

The main contributions of this paper are:

1. introduces the first formalization semantics of Habanero phasers;

2. defines an HB relation and an MHP relation for phaser operations;

3. shows that HB is a causality relation, given by Theorem 1;

4. shows that HB conforms with the reduction relation, given by Theorem 3;

5. presents the full Coq mechanization of the theory, along with examples.
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In the next section, we describe the phaser operations and its semantics. In Section 3, we introduce
Phase Ordering, the MHP relation, and the HB relation. Next, in Section 4, we establish the main results
with regards to the semantics of phasers. We conclude in Section 5 and discuss future directions.

2 Phaser semantics

Let us discuss informally the semantics of Habanero phasers by revisiting the example in Figure 1. In
the following Java code listing, tasks t1 and t2 synchronize each of their access to two different shared
variables x and y by means of a phaser ph.

1 ph = newPhaser(SIG_WAIT);

2 asyncPhased(ph.inMode(SIG_WAIT), () -> {

3 ph.signal ();

4 y = 2;

5 ph.doWait ();

6 println(x);

7 ph.drop();

8 });

9 x = 1;

10 ph.signal ();

11 ph.doWait ();

12 println(y);

Task t1 creates phaser ph in Line 1 and then spawns a task t2 in Line 2. These two tasks are the
signalers of ph. The creator of a task is a signaler of that phaser. Signalers, and only signalers, can
register other members by spawning them with asyncPhased and passing the target phaser. Here, task t1
registers task t2 with phaser ph — we postpone discussing the meaning of expression ph.inMode(SIG_WAIT)

in Line 2; for now it is enough to interpret the expression as ph. Task t1 then writes to variable x in Line 9
and reads from variable y in Line 12, while, concurrently, task t2 writes to variable y in Line 4 and
reads from variable x in Line 6. Before terminating, task t2 revokes its membership on phaser ph by
invoking ph.drop() in Line 7.

Tasks t1 and t2 synchronize in the example by executing ph.doWait() in Lines 5 and 11: each task
waits for phase 1 to be observed, which can only happen once both task execute ph.signal() in Lines 3
and 10. The reason there is a data race in Lines 4 and 12 is because task t1, that blocks with ph.doWait()

before reading y, can unblock and read the variable when task t2 signals in Line 3. But since task t2 writes
to y after signaling, then the read from task t1 in Line 12 runs concurrently with the write of task t2 in
Line 4.

A feature that distinguishes Habanero phasers from other barrier-like synchronization mechanisms
is that waiting for signalers is optional. A task can choose to manipulate a phaser according to two
abilities: (i) the ability to observe phaser synchronization, i.e., waiter, and (ii) the ability to influence
synchronization, i.e., signaler. Each member is registered according to a mode r among: SW for tasks that
must signal and wait, WO for tasks that wait but do not signal, and SO for tasks that signal but do not wait.
In the example, task t1 registers task t2 in phaser ph using mode SW, which is short for SIG_WAIT, given by
expression ph.inMode(SIG_WAIT) in Line 2.

Waiting observes the signals from every signaler. Thus, tasks that wait and signal, mode SW, as in
the example, must signal before waiting at every phase to prevent waiting for a signal the task did not
produce. This synchronization pattern is known as a barrier. Members disregard wait-only (WO) tasks
upon waiting; this subset of tasks cannot influence synchronization, only observe it. Phasers can encode
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P(t) = v Signaler v v.mode= SW =⇒ v.wp= v.sp

P
t:signal−−−−−→ P[t 7→ v.sp:= v.sp+1]

t sync P P(t) = v Waiter v v.mode= SW =⇒ v.wp+1 = v.sp

P t:wait−−−→ P[t 7→ v.wp:= v.wp+1]
t ′ /∈ P P(t) = v Waiter r =⇒ Waiter v Signaler r =⇒ Signaler v

P
t:reg(t ′,r)−−−−−→P[t ′ 7→ v.mode:= r]

t ∈ P

P
t:drop−−−→ P− t

Figure 2: Operational semantics of phaser operations

latches, future-promises, and fork-join synchronization patterns using wait-only tasks. Finally, tasks that
only signal, do not wait for others; this lets phasers encode producer-consumer synchronization.

HJ Phaser formalization. We define the state of a phaser P to be a map from members T into
views V , which holds the signal count, the wait count, and registration mode of a member. Consider
the usual operations on finite maps (which we use to encode phasers) with the given notation: predicate
P(t) = v ensures that the pair of key t and value v is a member of map P, predicate t ∈ P is short-hand
for ∃v : P(t) = v, map P[t 7→ v] adds the pair t and v to map P (replacing the assigned view if t ∈ P), and
map P− t results from removing the pair associated with key t from map P. In the mechanization, we
use Coq’s standard library of finite maps Coq.FSets.FMaps.

A view v represents the task-local information that each member has over the phaser. The view
consists of a triple: the first value n is a natural number that counts the number of times the given task
issued a signal on the target phaser and can be accessed by v.sp; the second value m counts the number
of waits and can be accessed by v.wp; the third value r is the registration mode of the given task and is
accessed by v.mode.

v ::= {sp:=n,wp:=m,mode:= r}

The field update operation v. f := e yields a view that is the same as v except for field f that becomes e.
For instance, v.sp := 3 yields a view, say w, where w.wp = v.wp, w.sp = 3, and w.mode = v.mode. To
inquire the signaling and waiting abilities of a view we have the following predicates: Waiter r def

= r ∈
{WO,SW}, Signaler r def

= r ∈ {SO,SW}. And let the short-hand notation Signaler v def
= Signaler v.mode and

Waiter v def
= Waiter v.mode.

We define a small-step operational semantics for phaser operations in Figure 2. The reduction t:o−→ is
labeled by the member t issuing the operation, and by an operation o defined below.

o ::= signal | wait | reg(t,r) | drop

Remark 1. To model Java phasers and X10 clocks semantics refer to Figure 2 but limit the registration
mode to signal-wait mode, that is r ::= SW.

Operation signal increments the signal phase. Only tasks registered as signalers can issue this
operation. The pre-conditions in signal, v.wp= v.sp, and in wait, v.wp+1= v.sp, enforce tasks registered
in signal-wait mode to interleave each signal with a wait.

https://coq.inria.fr/library/Coq.FSets.FMaps.html
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Waiting is the crux of synchronization; this is captured by t sync P, defined next.

P(t).mode= SO

t sync P
Waiter P(t) Await(P,P(t).wp+1)

t sync P

Signal-only tasks do not wait for others, so t sync P holds in this case. Waiter task t must await
the subsequent wait-phase P(t).wp+1. Proposition Await(P,n) holds once phase n can be observed; the
definition ensures that all tasks that can signal have issued at least n signals.

Await(P,n) def
= ∀t : Signaler P(t) =⇒ P(t).sp≥ n

Tasks register other tasks with with asyncPhased, which is captured by reg(t,r). For instance,
instruction asyncPhased(ph.inMode(SIG_WAIT),...) in Line 1 becomes reg(t2,SW) in this semantics if
we are spawning task t2. Habanero phasers limit task registration: only unregistered tasks can be
added, thus t ′ ∈ P, only registered tasks t can add new members, P(t) = v, only waiters can regis-
ter other waiters, hence Waiter r =⇒ Waiter v, and only signalers can register other signalers, so
Signaler r =⇒ Signaler v.

To establish the results in the next section, let us establish the invariant of well-formedness. Addi-
tionally, let P−→ Q be defined as there exist t and o such that P t:o−→ Q.

Definition 1 (Well-formed view). Let a well-formed view be such that v.wp ≤ v.sp and if Waiter v then
v.sp− v.wp≤ 1. Let V WF be the set of all well-formed views.

Lemma 1 (Reduction preserves well-formedness of views). Let P be such that if P(t) = v, then v∈V WF .
If P−→ Q, then Q is such that if Q(t) = v, then v ∈ V WF .

Henceforth, we only consider views that are in V WF .

3 Phase Ordering

This section formalizes Phase Ordering, originally introduced in [13], to reason about whether two tasks
should execute concurrently in terms of views V and states P . Specifically, Phaser Ordering is a
Happens-Before relation: if the number of signals issued by a task is smaller than the last phase ob-
served by some other task, then the former Happened Before the latter. For instance, let v1 be a view
that task t1 has over the phaser in Figure 1 and v2 be a view that task t2 has over the phaser in Figure 1,
each from a distinct state of the same phaser ph, i.e., there exists two states P and Q such that P(t1) = v1

and Q(t2) = v2. Now, let v1
def
= {sp:=0,wp:=0,mode:=SW} be the view of t1 when executing x:=1 and

v2
def
= {sp := 1,wp := 1,mode := SW} be the view t2 when executing println(y). The registration mode

tells us that view v2 must observe and wait for the signals of v1. View v1 tells us that t1 did not produce
any signal and v2 tells us that t2 observed phase 1 (a collective signal). Thus, since t1 signaled fewer
times than the phase observed by t2, we can infer that v1 must have happened before v2. In order for
view v2 to observe a signal, the task controlling view v1 must eventually signal to become v1.sp= 1.

Definition 2 (Happens-before (HB) relation). Let v1 ≺ v2 read as v1 must have happened before v2,
defined as the conjunction of:

Signaler v1 v1.sp< v2.wp Waiter v2

We say that P≺ Q if there exist two tasks t, t ′ such that P(t)≺ Q(t ′).
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Example 1. Suppose P
t:signal−−−−−→ Q t:wait−−−→ R and that P(t).mode= SW. We have that P≺ R.

Proof. Let P(t) = v, Q(t) = w, and R(t) = u. First, we simplify our goal, since we know that from wait

u.wp = w.wp+ 1 and because signal does not alter the wait phase we have that w.wp = v.wp. Hence,
v.sp < u.wp ≡ v.sp < w.wp+ 1 ≡ v.sp < v.wp+ 1. Now, by inverting reduction

t:signal−−−−−→, we get two
cases: either v.wp= v.sp and it trivially holds, otherwise we get a contradiction.

Let us show that ≺ is a causality relation over views, a fundamental notion for many problems oc-
curring in distributed computing [11]. By causality relation we mean a strict partial order: (i) transitive:
if v1 ≺ v2 and v2 ≺ v3, then v1 ≺ v3; (ii) irreflexive: for all v, we have that ¬(v≺ v); (iii) asymmetric: if
v1 ≺ v2, then ¬(v2 ≺ v1).

Lemma 2. (≺,V ) is a causality relation.

To show that ≺ is a causality relation over phasers, we need to establish some auxiliary results that
reason about states that cannot happen before others, ¬(P ≺ Q). Since Coq uses a constructive logic,
it is easier avoid the use of false in our premises. Let the negation of Happens-Before be defined as
Cannot-Happen-Before.

Definition 3 (Cannot-Happen-Before relation). Let v1 � v2 read as v1 cannot happen before v2:

v1.mode= WO ∨ v1.sp≥ v2.wp ∨ v2.mode= SO

We say that P�Q if for any tasks t, t ′ we have that P(t)�Q(t ′).

Although our proofs use �, the following remark allow us to present our lemmas with the more
familiar HB relation, ¬(P≺ Q).

Remark 2. We have that v1 ≺ v2 ⇐⇒ ¬(v1 � v2), v1 � v2 ⇐⇒ ¬(v1 ≺ v2), P1 ≺ P2 =⇒ ¬(P1 �P2),
and P1 �P2 =⇒ ¬(P1 ≺ P2)

Finally, we define the usual notion of May-Happen-in-Parallel (or concurrency relation) for views
and for phasers.

Definition 4 (May-Happen-in-Parallel relation). Let v1 || v2 read as v1 happens in parallel with v2 and
be defined as v1 � v2 and v2 � v1. Let P1 ||P2 be defined as P1 �P2 and P2 �P1.

4 Results

Similarly to what happened with showing the causality of ≺ over views, when establishing the causality
of ≺ over phasers we require an invariant that relates the various local views of a phaser. While in the
context of views, we must ensure that the wait phase does not overtake the signal phase, in the context
of phasers we must ensure that its views may happen in parallel with each other, i.e., there must be no
scheduling constraints within a phaser.

Definition 5 (Well-ordered phaser). Let a well-ordered phaser be such that P ||P. Let PWO be the set of
all well-ordered phasers.

Reduction cannot introduce unsolvable scheduling constraints within a phaser.

Lemma 3 (Reduction preserves phaser well-orderedness). If P ∈PWO and P−→ Q, then Q ∈PWO.

We are now ready to show that ≺ is a causality relation over phasers.
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Theorem 1. (≺,PWO) is a causality relation.

The execution of an HJ program must respect the scheduling restriction imposed by Phase Ordering.
In the point of view of our formalization, the reduction relation captures the execution of a single phaser
operation. Thus, Theorem 2 shows that the state after execution cannot happen before the state before
execution, or, in other words, that the pre- and post-states of a phaser operation respect Phase Ordering.

Theorem 2. If P ∈PWO and P−→ Q we have that ¬(Q≺ P).

It is curious to consider that from P−→ Q we can also conclude ¬(P≺ Q). Thus, it follows that.

Lemma 4. If P ∈PWO, P−→ Q, then P ||Q.

Be aware, however, that MHP does not enjoy transitivity, otherwise HB would be an empty relation!
Example 1 is an evidence of when P ||Q and Q ||R but ¬(P ||R), as P≺ R. This also tells us that for any
two states P and Q if we have P≺ Q, then state Q is the result of at least two phaser operations.

The final theorem establishes that the execution of an HJ program respects the scheduling restriction
imposed by Phase Ordering. While Theorem 2 relates the pre- and post-states of executing a single
operation, Theorem 3 generalizes this result to any possible execution trace, showing that Phase Ordering
captures the execution order of instructions in programs that use phasers. Let −→∗ be defined as the
reflexive transitive closure of −→.

Theorem 3 (Absence of synchronization errors). P ∈PWO, P−→∗ Q, then ¬(Q≺ P).

Our results can be summarized into three groups. The first group consists of Lemmas 1 and 3;
this serves as a steppingstone for our main results. The former lemma establishes an invariant on a
relationship between wait and signal phases (V WF ), while the latter lemma establishes an invariant on
a relationship between any two views picked from a state (PWO). Since V WF and PWO are preserved
by our semantics, any program that manipulates Habanero phasers can assume Lemmas 1 and 3 to hold.
The second group consists of Lemma 2 and Theorem 1 and lets us relate views (and states) with the HB
relation. The third group consists of Theorems 2 and 3 and it lets us conclude that the execution of a
program using Habanero phasers respects the scheduling restriction imposed by Phase Ordering (HB)
relation.

5 Conclusion

In this paper we propose the first formalization of Habanero phaser semantics and of Phase Ordering,
from which we derive the May-Happen-In-Parallel (MHP) and Happens-Before (HB) relations for phaser
operations, as part of an ongoing effort to formalize the Habanero programming model. Our definitions
and proofs are mechanized using the Coq proof assistant, it consists of 2600 lines of code and 140
lemmas. Our next step is to verify data-race errors in parallel programs that feature collective producer-
consumer synchronization patterns.
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A Main definitions and results in Coq

This section presents code listings, in Coq syntax, of the definitions and results found in Sections 3 and 4.
The full proof scripts and auxiliary lemmas can be found online in our open source project HJ-Coq [3].
The next code listing shows definitions related to views.

(* Module declares a name space to avoid avoid name collisions

between the definitions of views and phasers. *)

Module Taskview.
(* Definition 1 for views, defined by three cases: *)

Inductive Wellformed v : Prop :=
| tv_wellformed_wait_cap_eq:
WaitCap (mode v)→
wait_phase v = signal_phase v→
Wellformed v

| tv_wellformed_wait_cap_succ:
WaitCap (mode v)→
S (wait_phase v) = signal_phase v→
Wellformed v

| tv_wellformed_so:
mode v = SIGNAL_ONLY→
wait_phase v <= signal_phase v→
Wellformed v.

(* Definition 2 for views: *)

Inductive HappensBefore v1 v2 : Prop :=
tv_hb_def:
signal_phase v1 < wait_phase v2→
SignalCap (mode v1)→
WaitCap (mode v2)→
HappensBefore v1 v2.

(* Declare the infix notation of the HappensBefore relation *)

Infix "≺" := HappensBefore : phaser_scope.
(* Definition 3 for views, defined by three cases: *)

Inductive CannotHappenBefore v1 v2 : Prop :=
| tv_chb_ge:

signal_phase v1 >= wait_phase v2→
CannotHappenBefore v1 v2

| tv_chb_so:
mode v2 = SIGNAL_ONLY→
CannotHappenBefore v1 v2

| tv_chb_wo:
mode v1 = WAIT_ONLY→
CannotHappenBefore v1 v2.

(* Define the infix notation of HappensBefore. *)

Infix "�" := CannotHappenBefore : phaser_scope.
End Taskview.

Next, we list the definitions and notations related to phasers from Section 3.

Module Phaser.
(* Definition 1 for phasers: *)

Inductive Wellformed (ph:phaser) : Prop :=
ph_wellformed_def:
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(∀ t v, Map_TID.MapsTo t v ph→ Taskview.Wellformed v)→
Wellformed ph.

(* Definition 2 for phasers: *)

Inductive HappensBefore (ph1 ph2:phaser) : Prop :=
ph_hb_def:
∀ t1 t2 v1 v2,
Map_TID.MapsTo t1 v1 ph1→
Map_TID.MapsTo t2 v2 ph2→
Taskview.HappensBefore v1 v2→
HappensBefore ph1 ph2.

(* Defines the infix notation of HappensBefore. *)

Infix "≺" := HappensBefore : phaser_scope.
(* Definition 3 for phasers: *)

Inductive CannotHappenBefore (ph1 ph2:phaser) : Prop :=
ph_chb_def:

(∀ t1 t2 v1 v2, Map_TID.MapsTo t1 v1 ph1→ Map_TID.MapsTo t2 v2 ph2→
Taskview.CannotHappenBefore v1 v2)→

CannotHappenBefore ph1 ph2.
(* Defines the infix notation of CannotHappenBefore. *)

Infix "�" := CannotHappenBefore : phaser_scope.
(* Definition 5: *)

Inductive WellOrdered x : Prop :=
well_ordered_def: Facilitates x x→ WellOrdered x.

(* Definition 5: *)

Inductive Par x y: Prop :=
par_def: Facilitates x y→ Facilitates y x→ Par x y.

End Phaser.

Finally, we cross-reference the lemmas and theorems in the paper against the Coq mechanization.

(* Lemma 1 *)

Lemma ph_reduces_preserves_wellformed:
∀ ph t o ph’, Wellformed ph→ Reduces ph t o ph’→ Wellformed ph’.
(* Lemma 2 *)

Theorem tv_lt_trans: ∀ x y z, Wellformed y→ x ≺ y→ y ≺ z→ x ≺ z.
Theorem tv_lt_antisym:∀ x y, Wellformed x→ Wellformed y→ x ≺ y→¬(y ≺ x).
Theorem tv_lt_irreflexive: ∀ v, Wellformed v→¬(v ≺ v).
(* Lemma 3 *)

Lemma ph_hb_irreflexive: ∀ ph, WellOrdered ph→¬(ph cc≺ ph).
Lemma ph_hb_antisym: ∀ x y, WellOrdered x→ WellOrdered y→ x ≺ y→¬(y ≺ x).
Lemma ph_hb_trans: ∀ ph1 ph2 ph3, WellOrdered ph2→ ph1 ≺ ph2→ ph2 ≺ ph3→ ph1 ≺ ph3

(* Theorem 1 *)

Lemma reduces_ne: ∀ x y, WellOrdered x→ SReduces x y→ x �y.
(* Lemma 4 *)

Lemma reduces_par: ∀ x y, Wellformed x→ WellOrdered x→ SReduces x y→ x || y.
(* Theorem 2 *)

Lemma ph_ge_reduce:
∀ ph t o ph’, Wellformed ph→ WellOrdered ph→ Reduces ph t o ph’→ ph’ �ph.
(* Theorem 3 *)

Lemma ph_s_reduces_trans_refl_ge: ∀ x y, Wellformed x→ WellOrdered x→
clos_refl_trans phaser SReduces x y→ y �x.
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B Proof sketches

The proofs for all lemmas and theorems in this paper are machine checked in [3]. In this section, we
show the proof sketches for the main results.

Theorem 1 (≺,PWO) is a causality relation.

Proof. (≺,PWO) is transitive: if P ≺ Q and Q ≺ R, then P ≺ R. We invert P ≺ Q and get that there
exists t1 and t2 such that P(t1) = v1, Q(t2) = v2, and v1 ≺ v2. Similarly, we invert Q ≺ R and get that
there exists t3 and t4 such that Q(t3) = v3, R(t4) = v4 such that v3 ≺ v4. From Q ∈PWO, Q(t3) = v3, and
Q(t2) = v2, thus v3 � v2. From v1 ≺ v2, v3 ≺ v4, and v3 � v2, we can conclude that v1 ≺ v4, and therefore
P≺ R.

(≺,PWO) is irreflexive: if P ∈PWO then ¬(P ≺ P). From P ∈PWO we get that P�P. Then, we
apply Remark 2 and get that ¬(P≺ P).

(≺,PWO) is asymmetric: if P≺Q, then ¬(Q≺ P). Using Remark 2 it is enough to show that Q�P,
specifically that if Q(t1) = v1 and P(t2) = v2, then v1 � v2. It can be shown that for any pair of views we
have that v1 ≺ v2 or v1 � v2. Since the latter concludes the proof directly, we proceed to show that the
former case, v1 ≺ v2, leads to a contradiction. From P≺Q we have that there exists task t and t ′ such that
P(t) = v, Q(t ′) = w, and v≺ w. The contradiction arises from arriving at ¬(v1�w) and v1�w. First, we
get v1�w by applying Definition 5 to P∈PWO, Q(t1) = v1, and Q(t ′) = w. Second, we show ¬(v1�w).
Applying Definition 5 to P ∈PWO, P(t) = v, and P(t2) = v2 results in v� v2. As we have seen in the
proof of transitivity, from v1 ≺ v2, v ≺ w, and v� v2, we conclude v1 ≺ w. Applying Remark 2 we get
that ¬(v1 �w), which leads to the contradiction.

Theorem 2 If P ∈PWO and P−→ Q we have that ¬(Q≺ P).

Proof. By inverting the hypothesis P−→Q we get P t:o−→Q. Next, we invert P t:o−→Q and obtain four cases,
one for each constructor of o. For each case it is enough to show that given P(x) = vx and Q(y) = vy, we
can obtain vy � vx.

Cases o = signal and o = wait proceed similarly. We test if y = t. If y 6= t, then Q(y) = P(y). We
can obtain vy � vx from Q(y) = vy , Q(y) = vy and Q ∈PWO (which we get from Lemma 3, P −→ Q,
and P ∈PWO). Otherwise y = t, and we get that there exists a view v such that P(y) = v. Let the
increment of the signal phase (wait phase) be denoted by o(v) where o(v) = vy. At this point, we have
P(y) = v and Q(y) = o(v). Then, we just need to show that o(vx)� vx, given that v� vx, which we get
from P(y) = v, P(x) = vx, and P ∈PWO.

Case o= reg(t ′,r), where we have P(t) = v. We test if t ′= y. If t ′ 6= y, then P(y) = vy. Thus, we have
vy � vx from P(y) = vy, P(x) = vx, and P ∈PWO. Otherwise, t ′ = y, and therefore vy = (v.mode:= r).
From P(t) = v, P(x) = vx, and P ∈PWO, we conclude v � vx. We close the case by showing that
from v� vx then (v.mode:= r)� vx holds.

Case o = drop, since we have Q = P− t, then P(y) = vy. From P(y) = vy, P(x) = vx, and P ∈PWO,
we get vy � vx.

Theorem 3 P ∈PWO, P−→∗ Q, then ¬(Q≺ P).



12 Formalization of Phase Ordering

Proof. We state our result in terms of Q�P and, but we can use Remark 2 to obtain ¬(Q ≺ P). The
proof follows by induction on the derivation tree of P−→∗ Q. For the base case we have that Q = P, and
we show that P�P holds.

For the inductive case we have that there exists a phaser R such that P−→∗ R, R−→Q, and R�P. From
P ∈PWF (which states that every view v in R is v ∈ V WF ) and P −→∗ R we can get that R ∈PWF , by
performing induction on the structure of P−→∗ R and using Lemma 1. Similarly, we get that R ∈PWO,
by performing induction on the structure of P−→∗ R and using Lemma 2. The final step of the proof is to
show that if R ∈PWF R�P, and R −→ Q, then Q�P. At this point, we perform a case analysis in the
reduction relation R−→ Q. The case for R

t:drop−−−→ Q is trivial, thus we shift our attention to the remaining
cases, where domR ⊆ domQ, and the crux of the proof is showing that if P(x) = vx and R(y) = vy, and
Q(z) = vz, then vz � vx.

We now check if t = z. If the check succeeds, then we can conclude that there is a view v such that
R(z) = v such that vx results by applying a signal or wait to v, notation vx = o(v). Now, because we have
that R�P, then v� vx, so we just need to show that o(v)� vx, which we omit detailing.

Finally, we address the case where t 6= z. We inspect o and discuss the non-trivial case, when there
exist t ′, r, and v such that o = reg(t ′,r), R(t) = v, and vz = (v.mode:= r). Recall, we want to show that
(v.mode:= r)� vx holds. The proof can be concluded using three premises: Waiter r =⇒ Waiter v and
Signaler r =⇒ Signaler v, which we get from the reduction rule on reg(t ′,r); and v� vx, which we get
from R�P.
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