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Futures are an elegant approach to expressing parallelism in functional programs. However, combining

futures with imperative programming (as in C++ or in Java) can lead to pernicious bugs in the form of data

races and deadlocks, as a consequence of uncontrolled data flow through mutable shared memory.

In this paper we introduce the Known Joins (KJ) property for parallel programs with futures, and relate it to

the Deadlock Freedom (DF) and the Data-Race Freedom (DRF) properties. Our paper offers two key theoretical

results: 1) DRF implies KJ, and 2) KJ implies DF. These results show that data-race freedom is sufficient to

guarantee deadlock freedom in programs with futures that only manipulate unsynchronized shared variables.

To the best of our knowledge, these are the first theoretical results to establish sufficient conditions for deadlock

freedom in imperative parallel programs with futures, and to characterize the subset of data races that can

trigger deadlocks (those that violate the KJ property).

From result 2), we developed a tool that avoids deadlocks in linear time and space when KJ holds, i.e., when

there are no data races among references to futures. When KJ fails, the tool reports the data race and optionally

falls back to a standard deadlock avoidance algorithm by cycle detection. Our tool verified a dataset of ∼2,300
student’s homework solutions and found one deadlocked program. The performance results obtained from

our tool are very encouraging: a maximum slowdown of 1.06× on a 16-core machine, always outperforming

deadlock avoidance via cycle-detection. Proofs of the two main results were formalized using the Coq proof

assistant.
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1 INTRODUCTION
Futures [Halstead 1985] offer a simple model of parallelism. Programmers annotate certain function

calls as being asynchronous. Calling one such function immediately returns a future object that acts

as a placeholder for the value computed by that call. The get primitive on a future object retrieves

the value computed by the asynchronous function call. An invocation of the primitive blocks its

caller’s execution until the asynchronous call terminates. We focus on a parallel programming

model where asynchronous calls fork new tasks, and obtaining function values via futures awaits

task termination.

As with any source of concurrency, the interaction with shared memory must be carefully

regarded. Since future objects can be freely communicated via shared memory, program execution

may introduce circular dependencies among tasks waiting on future values, which constitutes a

form of deadlock. The focus of this paper is twofold: to formally study the relationship between

deadlocks on futures and accesses to shared memory, and to propose an efficient runtime technique

to ensure that tasks manipulating futures never reach deadlocked situations.

The deadlock problem [Isloor and Marsland 1980] can be handled in one of three ways: by

statically preventing the deadlock from happening at all [Boyapati et al. 2002a; Williams et al. 2005],

by monitoring the runtime execution while detecting already deadlocked situations [Hilbrich et al.

2009, 2012; Krammer et al. 2008; Luecke et al. 2003; Vo 2011], and by dynamically avoiding deadlocks
from happening [Boudol 2009; Cogumbreiro et al. 2015; Dijkstra 1965; Gerakios et al. 2011; Li et al.

2010]. Some works delay, or replay, schedules to avoid deadlocks [Boudol 2009; Gerakios et al. 2011;

Navabi et al. 2008; Welc et al. 2005]; in our model as in Cogumbreiro et al. [2015], waiting on a

deadlocked future raises an exception.

The problem of deadlock avoidance for task termination (joining) is known to have quadratic

time and space complexity on the number of running tasks [Reveliotis et al. 1997a]. This fact alone

makes deadlock avoidance on parallel runtimes prohibitive to use in practice. To circumvent the

problem, programming language researchers proposed different syntactic restrictions on programs

that prevent deadlocks from ever happening. For example, the X10 language [Charles et al. 2005]

includes an async/finish construct for task forking and joining: at the end of a finish scope the task

running the finish operation joins with all tasks forked in that scope, directly or indirectly. X10

programs are deadlock free by construction for tasks joining with a finish construct. Unfortunately,

syntactic restrictions are inapplicable to programming models with futures.

We propose a theory of futures and shared memory programming to reason about deadlocks

caused by synchronization on task termination (henceforth called joining). We introduce a runtime

policy on joining, called Known Joins (KJ), that guarantees absence of deadlocks. The two ways for

a task to augment its knowledge is by forking and by joining. When forking a new task, the forking

task (the parent) becomes acquainted with forked task (the child). The child inherits the knowledge

of the parent but does not know its own identity (thereby ensuring tasks cannot trivially deadlock

on themselves). After joining, the waiting task augments its knowledge with that of the terminated

task. The Known Joins policy says that tasks should only join with known tasks, and never with

tasks obtained by other means. KJ is applicable to any programming model where tasks can await

the termination of other tasks, including models with shared memory multithreading, fork-join,

and futures. This is the essence of the first part of the formal development, section 3, which proves

that the root cause of deadlocks is the voiding of the Known Joins policy.

The second part of the formal development, section 4, concentrates on programs that manipulate

futures as the sole synchronization mechanism. We show that, for this subset, only racy programs

can violate the Known Joins policy, or, conversely, that all data-race-free programs follow the

Known Joins policy. In this setting, the chain of events for a deadlock is as follows: a racy read
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causes a task to introduce an unknown task name, which causes a join with an unknown task, which

leads to a deadlock. However, for programs that include other synchronization mechanisms beyond

futures, such as mutexes and critical sections, data races are not the core issue (since deadlock is

possible in data-race-free programs with these mechanisms). Instead, as summarized in section 3,

the root cause of deadlocks with futures is the voiding of the Known Joins policy.

We show that the Known Joins property avoids task-termination deadlocks in linear time and

space in the presence of data-race free computations, surpassing state-of-the art deadlock avoidance

tools that run in quadratic time and space. By showing that the KJ property can be formulated

as a causality test, we set an upper bound on the time and space complexities of KJ testing—a

state-of-the-art causality test uses vector clocks and is linear in time and quadratic in space [Fidge

1988; Mattern 1989]. As an alternative to vector clocks, we propose an algorithm based on snapshot-
sets that achieves both linear space and time complexities. In our solution, each task maintains its

set of known tasks, extending this knowledge at forking and joining points. With vector clocks,

extending knowledge means duplicating the data from one task to another. A snapshot-set is

a concurrent graph-like data structure holding the known tasks. Extending knowledge means

duplicating references, thereby avoiding copying the snapshots, thus saving memory.

Our technique can be effectively used in programming models with different parallel constructs.

The KJ property is oblivious to data movements (e.g., via volatiles, atomics, and mutual exclusion)

and can be integratedwithmost synchronizationmechanismswe are aware of. To this end, we add KJ

checks to the Habanero runtime [Cavé et al. 2011]. The deadlock-free Habanero programmingmodel

consists of three constructs: isolated [Imam et al. 2015] for mutual exclusion; async-finish [Charles

et al. 2005], a generalization of the fork-join model where a task can await the termination of its

descendants; and, phasers [Shirako et al. 2008], a generalization of barriers with producer-consumer

synchronization. By adding futures to this mix, deadlocks can only be caused by futures. Our

extended runtime therefore supports deadlock-freedom with futures, mutual exclusion, fork-join,

and barriers.

The contributions of this paper are:

Theoretical. A formalization of the KJ property for parallel programs with future tasks as the

sole form of synchronization that enjoys Deadlock Freedom (DF) and Data Race Freedom (DRF).

Our paper offers two key theoretical results: 1) DRF =⇒ KJ, and 2) KJ =⇒ DF; hence,

DRF =⇒ DF. To the best of our knowledge we are the first to build a mathematical argument

on the root cause of deadlocks in this context. A novelty of our approach is to use causality

to reason about deadlock avoidance. Our theory and results are fully mechanized using the

Coq proof assistant.
1

Algorithmic. A solution to the deadlock avoidance problem in O(n) time and space, where n
is the number of tasks forked. Known solutions take O(m2) time and space wherem is the

number of running tasks. By using the finish construct we have that n ≈m. When compared

to other causality analysis algorithms, ours solution uses O(n) space, whereas traditional
solutions (e.g., vector clocks) require O(n2).

Implementation. An extension of the Habanero for Java runtime that grants deadlock avoid-

ance for futures, mutual exclusion, finish blocks, and phasers. Gorn—the implementation

of KJ—outperforms standard deadlock avoidance based on cycle detection.
2
Gorn verified

a dataset of ∼2,300 student’s homework solutions and found one deadlocked program. We

also evaluated the overheads of our tool against a series of standard parallel programs and

witnessed a maximum slowdown of 1.08×, and a maximum memory overhead of 2.34×. The

1
Our Coq mechanization can be downloaded at: https://gitlab.com/cogumbreiro/gorn-coq/tree/oopsla17

2
Gorn can be downloaded at: https://gitlab.com/cogumbreiro/gorn/tree/oopsla17
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Listing 2.1 The program invokes A() and B() concurrently. This program exhibits neither deadlocks

nor races.

1 // Task f

2 future <future <int >> a = async { // Task g

3 future <int > b = async { return B();}; // Task h

4 A(); return b; };

5 future <int > c = a.get();

6 c.get();

benchmarks scale up to 1 million tasks and exercise distinct synchronization patterns using

futures, such as a parent waiting for many children, recursive parent-children wait, sibling

waits, and consecutive fork-joins.

The rest of the paper is organized as follows. Section 2 introduces futures and its programming

model. Section 3 abstracts program execution by means of traces and presents the KJ property. Next,

section 4 establishes the root cause of future-based deadlocks. Section 5 discusses Gorn along with

its implementation details, and is followed by section 6 that evaluates the tool. Finally, section 7

covers related work and section 8 concludes the paper.

2 PROGRAMMINGWITH FUTURES
This section introduces programming with futures in the Habanero-Java (HJ) language [Cavé et al.

2011], an extension of Java with constructs for task parallelism. In the notation used in this paper,

expression async S forks a task that evaluates statement S in parallel with the forking task and

returns a future of type future<T>, where T is the type of the value returned by statement S. The

future includes a get() method that can be invoked to await the termination of the task forked by

the async, thus retrieving the value returned by S. Subsequent invocations of get() are nonblocking

and always return the same value. For the sake of presentation, variables declared with a shared

modifier can be shared among tasks, otherwise they are local to a single task.

f д h

async

async

A() B()

get()=h

get()=B()

Fig. 1. Sequence diagram of listing 2.1.

The program in listing 2.1 calls functions A() and B() in

parallel. This program illustrates three tasks communicating

task names via futures values (obtained via get), as depicted

in figure 1. Task f forks task д and stores task name д in

variable a, in line 2. Task д forks h, in line 3, and then calls A().
Concurrently, task h invokes B(). After forking д, task f
awaits the termination of task д to retrieve h, in line 5. Finally,

task f awaits the termination of task h, in line 6. The type of

an async expression is a future of the type of the expression

returned by that forked task. For instance, in line 3, task h
returns B() (an int), so variable b is of type future<int>.

Futures can be communicated as values or stored in vari-

ables, allowing for complex synchronization patterns. List-

ing 2.2 illustrates the nefarious concurrency errors that can

be triggered by the use of shared memory. Task f creates two

shared variables, x and y. Next, f forks two tasks д and h, and
stores the futures in shared variables x and y, respectively. Concurrently, task д awaits the value of

task h in future variable y, while task h awaits the value of д in future variable x. There is a race

condition between reading from y in line 3, and writing to y in line 4, which leads to two possible
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Listing 2.2 Example program with a data race and a deadlock.

1 // Task f

2 shared future <int > x, y;

3 x = async {return y.get();}; //Task g

4 y = async {return x.get();}; //Task h

Listing 2.3 Program in listing 2.2 rewritten in C++.

1 std::future <int > x; std::future <int > y;

2 x = std:: async(std:: launch ::async , [&](){return y.get();});

3 y = std:: async(std:: launch ::async , [&](){return x.get();});

interleavings: either the task д observes (reads) the initial value of y, which in Habanero-Java

defaults to null, or task д observes the write of h in line 4. In the former interleaving, task д invokes

get on a null reference which triggers a NullPointerException. In the latter interleaving, the writes

to x and to y complete before the reads from x and from y, thus futures д and h left in a circular

dependency, deadlocked, each waiting for the other to terminate.

While this paper motivates its discussion with Habanero-Java examples, the results and tech-

niques translate to most languages that use futures. For instance, we can easily rewrite listing 2.2

into C++ in listing 2.3. The deadlock and the data race also exist in the C++ version.

3 THE KNOWN JOINS PROPERTY IMPLIES DEADLOCK FREDOM
Our approach to avoid deadlocks is to analyze the history of asyncs and gets to derive a partial order

on task names. We introduce a trace language to model the history of computations in section 3.1,

and our deadlock avoidance technique in section 3.2.

3.1 Trace Language
We define the language of instruction traces via the grammar below. An instruction trace t ∈ T ,

henceforth just trace, is a sequence of actions. An action a ∈ A pairs a task name f ∈ F with an

operation o ∈ O. Operations include the typical primitives in a fork-join model of computation.

The values d ∈ D of interest for our trace language are task names f and memory locations r ∈ R.

We note the absence of value null in the trace language: we are only interested in operations that

execute error free.

t ::= ϵ | t ;a Traces

a ::= (f ,o) Actions

o ::= init | m | async f | get f Operations

m ::= new r | wr r d | rd r d Memory Operations

d ::= f | r Values

The trace language includes six operations: init is the first operation any program executes

(invoked by the root task); async f forks a task named f ; get f joins with task name f ; new r
creates memory location r (available to all tasks); wr r d writes value d to location r ; and rd r d
reads value d from location r .

Example 1. We revisit the example of listing 2.1 by presenting its trace (on the right-hand side).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 103. Publication date: October 2017.
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1 // Task f (f , init)
2 future <future <int >> a = async { // Task g (f , async д)
3 future <int > b = async { return B(); }; // Task h (д, async h)
4 A(); return b;};

5 future <future <int >> c = a.get(); (f , get д)
6 c.get(); (f , get h)

Traces are listed left-to-right from the least recent to the most recent action, and include only the

relevant primitives in the language. For instance, function calls A() or B(), are not included in

traces. The only possible trace for this example is the following:

t1 = ϵ ; (f , init); (f , async д); (д, async h); (f , get д); (f , get h) (1)

Next we discuss memory access operations.

Example 2. A trace of the code in listing 2.2 can be written as follows.

t2 = ϵ ;(f , init); (f , new r ); (f , new q);
(f , async д); (f , wr r д); (f , async h); (f , wr q h); (h, rd r д); (д, rd q h) (2)

The program starts with task named f running operation init. Then it creates memory loca-

tions r and q for shared program variables x and y via two new operations. The task continues by

initializing memory reference r with the result of forking task named д (the first two actions of the

second line). Then it initializes memory location q with the result of forking task named h. The
trace ends with task h reading д from r and task д reading h from q. The effect of these reads is that
expression x.get() evaluates to task h awaiting the termination of task д, and expression y.get()

evaluates to task д awaiting the termination of task h, thus tasks д and h deadlock. Note that a
circular wait never shows up in a trace, since traces only record instructions that were actually

executed, and not the ones under execution.

3.2 Safety Rules
The theory of Known Joins (KJ) enforces that tasks should only await the termination of known
tasks. The two ways for a task to augment its knowledge is by forking (async) or by joining (get).

We introduce some operations onmaps, that is, partial functions of finite domain. Functions dom(M)
and range(M) represent the domain and range of mapM , respectively. FunctionM[k := v] associates
entry k to value v in mapM , replacing the previous value of k inM if k ∈ dom(M).
Knowledge, denoted by K , maps tasks into sets of tasks. We call K(f ) the known tasks of f . If

д ∈ K(f ), then we say that f knows д. For example, consider the knowledge associated to the code

in listing 2.1:

{ f : {д,h},д : {h},h : ∅}
We can see that task f knows tasks д and h, that task д knows task h, and that task h does not

know any task.

The rules for enforcing the Known Joins policy are defined in figure 2. The judgment ⊢ t : K
asserts that trace t enjoys the KJ property and produces a knowledge K . The trace is evaluated
left-to-right. Rule T-nil states that the empty trace yields an empty knowledge. Rule T-init assigns

the empty knowledge set to the initial task. Rule T-mem states that memory operationsm have no

effect on the knowledge. Rule T-async ensures that the forked task name д is fresh; the outcome

is that the child д knows what the parent f knew before forking, i.e., K(f ), and that the parent f
adds the child д to its knowledge. Rule T-get states that task f can only await the termination of

task д if f knows д (from д ∈ K(f )); the outcome is that task f inherits the knowledge of task д.
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⊢ ϵ : ∅ ⊢ t : K f < dom(K)
⊢ t ; (f , init) : K[f := ∅]

⊢ t : K
⊢ t ; (f ,m) : K (T-nil,T-init,T-mem)

⊢ t : K д < dom(K)
⊢ t ; (f , async д) : K[д := K(f )][f := K(f ) ∪ {д}]

⊢ t : K д ∈ K(f )
⊢ t ; (f , get д) : K[f := K(f ) ∪ K(д)]

(T-async,T-get)

Fig. 2. Rules for checking whether a trace complies with Known Joins.

We can easily show that the domain of a knowledge map obtained from the system in figure 2

contains its range.

Lemma 3.1. If ⊢ t : K , then range(K) ⊆ dom(K).

Example 3. Trace t1, obtained from listing 2.1, enjoys the KJ property.

⊢ ϵ : ∅
⊢ ϵ ; (f , init) : { f : ∅}

⊢ ϵ ; (f , init); (f , async д) : { f : {д},д : ∅}
⊢ ϵ ; (f , init); (f , async д); (д, async h) : { f : {д},д : {h},h : ∅}

⊢ ϵ ; (f , init); (f , async д); (д, async h); (f , get д) : { f : {д,h},д : {h},h : ∅}
⊢ ϵ ; (f , init); (f , async д); (д, async h); (f , get д); (f , get h) : { f : {д,h},д : {h},h : ∅}

Example 4. Similarly, we can easily show that t2, obtained from listing 2.2, enjoys theKJ property.

⊢ t2 : { f : {д,h},д : ∅,h : {д}}︸                         ︷︷                         ︸
K2

Given trace t2, task f can await the termination of д and h, it is unsafe for task д await any

task, and h can safely await the termination of д. If we inspect trace t2, we note that task д holds

a reference to task h (obtained from location q) and h holds a reference to task д (obtained from

location r ). Referring back to listing 2.2, at this point of the execution there are two possible actions

to be executed: (i) task h invokes a get on д, action (д, get h); and (ii) task h invokes a get on д,
action (h, get д). KJ rejects (i), that is, ⊬ t2; (д, get h), since д does not know h, i.e., h < K2(д) = ∅.
However, (ii) is safe. According to trace t2, it is safe for task h to wait for task д, since the former

knows the latter.

⊢ t2 : K2 д ∈ K2(h) = {д}
⊢ t2; (h, get д) : K2

To reason about deadlocked tasks, we introduce the notion of knowledge graph. The nodes of a
knowledge graph represent the tasks forked in the trace; the edges represent all possible joins on

known tasks.

Definition 3.2 (Knowledge graph). Given a knowledge map K such that range(K) ⊆ dom(K),
the knowledge graph associated to K , notation kg(K), is a pair (V ,E) where V = dom(K) and
E = {(f ,д) | д ∈ K(f )}.

The condition range(K) ⊆ dom(K) ensures that knowledge graphs are well-formed. Given the

result of lemma 3.1, we know that we can build a graph from the knowledge map obtained by
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the rules in figure 2. The main result of this section states that graphs obtained from traces that

conform to the KJ property (figure 2) are acyclic.

Theorem 3.3. If ⊢ t : K , then kg(K) is acyclic.

Proof. We proceed by induction in the structure of the trace, and analyze two representative

cases. When the trace ends with a get operation, task f joins with д, and given an edge, say (д,h),
we need to show that adding edge (f ,h) preserves the acyclic property. But we know that (f ,д)
from д ∈ K(f ). From (f ,д) and (д,h) we have that f already reaches h, thus adding the edge (f ,h)
does not introduce a cycle. When the trace ends with (f , async д), we are adding an edge (д,h)
given an edge (f ,h) and we need to prove that h does not reach д. Suppose the that h reaches д.
This means that h also has to reach f . But by hypothesis the edge (f ,h) is in the graph, which

means that there is a cycle passing through h, reaching a contradiction. □

The deadlock avoidance problem checks whether a given blocking operation leads to a deadlock.

A common way to handle this problem is by means of a Wait-For Graph [Knapp 1987], a graph

whose nodes are tasks and whose edges are wait-for dependencies. In the context of this paper, a

task f waits for a taskд if f invokes a get operation onд. Then, checking for a deadlock corresponds
to checking whether the Wait-For Graph is cyclic.

Let us relate Wait-For Graphs (WFGs) with the knowledge graph introduced before. When the

edges in the WFG only target known tasks, the WFG is a subgraph of the knowledge graph (as

the latter contains all possible known joins). Since the knowledge graph is acyclic (theorem 3.3),

we know that the WFG is acyclic. Using Known Joins, the deadlock avoidance algorithm becomes

a simple membership test: task f can perform get д if, and only if, f knows д. If the test fails
we cannot be sure whether the WFG is acyclic, in which case the unsafe get may be handled by

a standard cycle-based deadlock avoidance. Testing for known tasks in this way corresponds to

checking whether the WFG is a subgraph of the knowledge graph. Section 4.3, and in particular

definition 4.7, makes precise the relationship between Wait-For graphs and traces.

Revisiting our running example, recall that ⊢ t2 : K2. We can build the knowledge graph of the

trace, kg(K2), as the pair ({ f ,д,h}, {(f ,д), (f ,h), (h,д)}). Consider a deadlocked Wait-For GraphG
obtained from an execution of the code in listing 2.2, namely G = ({д,h}, {(д,h), (h,д)}). Since
(д,h) is not an edge in kg(K2), task д cannot wait for task h according to KJ. In contrast, it is safe

for task h to wait for д according to KJ.

Some traces are rejected by KJ and yet are deadlock free.
3
For instance, we can remove the get

operation in task h of listing 2.2 so that there is no possibility for deadlock. Trace t2 is a feasible
trace of the program below, but the get in task д is still considered unsafe according to KJ.

// Task f

shared future <int > x, y;

x = async {return y.get();}; //Task g

y = async {return 0;}; //Task h

Canwe characterize the class of programs accepted by KJ?When considering our stream language,

section 4 precisely characterizes the set of programs accepted by KJ as the set of data-race-free

programs. The benefit of using KJ is that the majority of the tests will succeed and conclude that

joining is safe, since most code respects our joining policy, cf. the empirical data in section 6.

3
In the implementation, such cases are handled by cycle-based deadlock avoidance.
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v1 v2 v3 v4

u1 u2 w1

async д get д get h

async h

kn : ∅ kn : {д}

kn : ∅ kn : {h}

kn : {д,h}

kn : ∅

kn : {д,h}
mem : ∅ mem : {д}

mem : ∅ mem : {h}

mem : {д,h}

mem : ∅

mem : {д,h}

hд

f

Fig. 3. Computation graph of the code in listing 2.1.

4 DATA-RACE FREEDOM IMPLIES DEADLOCK FREEDOM
Known Joins imposes a discipline on the communication of task names via forking and joining. Since

tasks can also communicate through shared memory, the question arises as how do shared memory

accesses affect knowledge. In this section, we relate data-race-free accesses with the preservation

of KJ. The standard model to reason about data races at runtime is through causality analysis, which

can be modeled with computation graphs. We opted by initiating our formal development with

traces since it provides a simpler setting that is sufficient to power our tool. Computation graphs

are not computed at runtime; they are however needed to show one of the main results, namely

that data-race freedom implies deadlock freedom (theorem 4.6). Section 4.1 introduces computation

graphs, section 4.2 shows how to extract a computation graph from a trace, and section 4.3 presents

the main result of this paper: DRF implies DF (corollary 4.8).

4.1 Computation Graphs
Lamport [1978] pioneered the idea of using a partial order to reason about causality among

concurrent events. Such a partial order is often called a happens-before relation. The intuition

behind the idea that an event u happened before an event v is that the former caused, or influenced,

the latter [Schwarz and Mattern 1994]. In distributed systems, researchers developed several

representations for causality relations [Baquero and Preguiça 2016], including vector clocks [Fidge

1988; Mattern 1989] and causal histories [Birman and Joseph 1987].

Researchers on the dynamic analysis of parallel and multithreaded systems introduced graph

representations of the happens-before relation, and called them computation graphs [Blumofe and

Leiserson 1998], computation DAGs [Cormen et al. 2009], or partial order execution graphs [Din-

ning and Schonberg 1991; Mellor-Crummey 1991]. The nodes of these graphs denote sequential

computation steps; the edges describe scheduling constraints, in such a way that an edge (u,v)
indicates that node u must execute before node v . We say that u happens beforew if there is a path

connecting u tow .

We now introduce the notion of computation graphs for a programming model with futures.

As an example, from the code in listing 2.1 we can extract the computation graph illustrated in

figure 3. Exactly how is made explicit in the next subsection. Nodes in computation graphs contain

information on the task the node belongs to, the set kn of known tasks, and the set mem of values
accessible in the local memory of the node. There are three different kinds of edges:

Continue edges capture the sequencing of steps within a task. These are graphically depicted

by solid arrows. All steps in a task are connected by continue edges. For instance, nodes v1
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andv2 of figure 3 represent the execution of statement future<future<int>> a = async {...}

in line 2 of listing 2.1; node v1 represents the event before running the statement and node v2
represents the event when the statement completed.

Fork edges represent the parent-child relationship among tasks, and are depicted by dotted

arrows.When a task forks another task from a given stepv , we draw an edge fromv to the first

node of forked task. For instance, since nodev1 forks a new task, the graph in figure 3 includes

a fork-edge from nodev1 tou1 representing the execution of statement future<future<int>>

a = async {...} in line 2 of listing 2.1; node v1 is the step before forking task д and step u1
is the start of task д.

Join edges represent synchronization among tasks, and are depicted by dashed lines. When a

task performs a get on task f to end in step v , we draw an edge from the last node of f to

step v . For instance, there is a join-edge from step u2 to step v3 in figure 3 that represent the

execution of statement future<int> c = a.get() in line 5 of listing 2.1; node u2 is the last
step of task д and node v3 is the continuation of the get operation, which started at v2.

Given that the computation graphs for our programming model have a restricted structure,

we define an algebra of computation graphs, cf. Mokhov and Khomenko [2014]. For the sake of

analysis, each node is a triple that includes a task name, a set of known task identifiers, and a set of

values that represents the local memory of the node. We denote by vtid, and vkn and vmem the three
projection functions on node v . Let F ⊆ F be a set of task identifiers, and D ⊆ D be a set of values.

The algebra of graphs is derived from the grammar below, wherem denotes a memory operation

as in the grammar of the trace language, section 3.1.

v ::= (f , F ,D) Nodes

G ::= ϵ | G +v | G + u
m→ v | G +v

fork← u
async f
→ w | G +v

get f
→ u

join
← w Graphs

The graph constructors are subject to a few restrictions, namely: in G +v , node v does not occur

in G; in all cases, nodes u and w are sink nodes in G (that is, they have zero outgoing edges); in

addition, nodew , the source of the join edge, does not contain outgoingm-labeled edges in G.
The usual notion of the happens-before relation can be easily defined on top of computation

graphs.

Definition 4.1 (Nodes, Edges, Happens-before). The nodes in a term G are the set of subterms v

of G; the edges in G are the set of subterms of G of the form u
l→ v where label l is either fork,

join or an operation o (as in the grammar in section 3.1), and the fork and join-labeled edges are

re-oriented to become left-to-right. We then say that u happens before v in a computation graph G ,

notation u ⪯G v , when u = u0
l0→ u1

l1→ · · · un−1
ln−1→ un = v are edges in G and n ≥ 0.

The following graph is graphically depicted in figure 3.

G1 = ϵ +v1 + u1
fork← v1

async д
→ v2 +w1

fork← u1
async h
→ u2 +v2

get д
→ v3

join
← u2 +v3

get h
→ v4

join
← w1

The nodes of G1 are {v1,u1,v2,w1,u2,v3,v4}, and the edges of G1 are {v1
fork→ u1,v1

async д
→

v2,u1
fork→ w1,u1

async h→ u2,v2
get д
→ v3,u2

join→ v3,v3
get h→ v4,w1

join→ v4}. Forking task д, rep-
resented by node v1, must happen-before the execution of task h, represented by nodew1, since we

have v1
fork→ u1

fork→ w1 . The first step of task д, node u1, happens before the execution of get on

task д in node v3, given that u1
async h→ u2

join→ v3. Finally, the continuation of forking v2 and the

first node of task д, node u1 can run in parallel, as there is no happens before relation between

these two nodes, that is v2 ⪯̸ u1 and u1 ⪯̸ v2.
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v1 v2 v3 v4 v5 v6 v7

u1 u2 w1 w2

new r new q async д wr r д async h wr q h

rd q h rd r д

mem : ∅ mem : {r } mem : {r ,q} mem : {r ,q,д} mem : {r ,q,д} mem : {r ,q,д,h} mem : {r ,q,д,h}
kn : ∅ kn : ∅ kn : ∅ kn : {д} kn : {д} kn : {д,h} kn : {д,h}

kn : ∅ kn : ∅
mem : {r ,q} mem : {r ,q,h}

kn : {д} kn : {д}
mem : {r ,q,д} mem : {r ,q,д}

f

д h

Fig. 4. Computation graph of the code in listing 2.2.

Definition 4.2 (Data visibility, Data-race freedom). We say that node v reads d from memory

location r in graph G if u
rd r d→ v is an edge in G. Similarly, we say that v writes d to r in G if

u
wr r d→ v is an edge in G. The write-set of a memory location r in graph G, notation WG (r ), is the

set {v is a node in G | v writes d to r , for some d}. When v writes to r or v reads from r we say
that v accesses r . We say that there is a data race between two distinct nodes u and v accessing r
in G, when at least one of these node writes to r , v ⪯̸G u, and u ⪯̸G v . We say that a computation

graph is data-race free if for every pair of nodes v and u there is no data race between them. We say

that node v produces a visible side-effect d in r if v writes d in r and every node in WG (r ) happens
before v . Finally, we say that value d is visible in memory location r if some node produces a visible

side-effect d in r .

Figure 4 depicts a computation graph G2 derived from the execution of the code in listing 2.2.

G2 = ϵ +v1 +v1
new r→ v2 +v2

new q
→ v3

+ u1
fork← v3

async д
→ v4 +v4

wr r д
→ v5 +w1

fork← v5
async h
→ v6 +v6

wr q h
→ v7

+w1

rd r д
→ w2 + u1

rd q h
→ u2

In this graph, the write-set of r is {v5}. There is a single data-race in G2, the one between nodes v7
and u2, since both nodes are accessing r , v7 is a write, and there is no path between these nodes

(u2 ⪯̸ v7 and v7 ⪯̸ u2). Furthermore, node v5 produces a visible side-effect д in r , as v7 is the only
write to r , which is observed (read) by nodew2.

4.2 Building Computation Graphs from Traces
We map a trace into a computation graph, in such a way that the computation graph captures the

scheduling constraints of the trace. Function [[·]], defined in figure 5, takes a trace and yields a

computation graph.

We briefly describe the various rules. Rule C-nil builds the empty graph ϵ from the empty

trace ϵ . Rule C-init adds a node tagged with task name f , an empty knowledge, and an empty local

memory. Memory operations (rules C-new, C-write, and C-read) produce continuation nodes the

same task name f and same knowledge vkn (cf. rule T-mem). Rule C-new ensures that the newly

created location r is indeed new, and extends the local memory of the node with r . Rule C-write

ensures that location r and value d are already in the local memory of node v , and leaves the local

memory unchanged. Rule C-read says that reading extends the local memory with value d loaded

from location r . The location from which f reads must be in the local memory of the node, vmem.
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[[ϵ]] = ϵ

f does not occur in t

[[t ; (f , init)]] = [[t]] + (f , ∅, ∅) (C-nil,C-init)

vtid = f r does not occur in t

[[t ; (f , new r )]] = [[t]] +v new r→ (f ,vkn,vmem ∪ {r })
(C-new)

vtid = f r ,d ∈ vmem

[[t ; (f , wr r d)]] = [[t]] +v wr r d→ (f ,vkn,vmem)
(C-write)

vtid = f r ∈ vmem d is visible in r

[[t ; (f , rd r d)]] = [[t]] +v rd r d→ (f ,vkn,vmem ∪ {d})
(C-read)

vtid = f д does not occur in t

[[t ; (f , async f )]] = [[t]] + (д,vkn,vmem)
fork← v

async д
→ (f ,vkn ∪ {д},vmem ∪ {д})

(C-async)

vtid = f utid = д д ∈ vmem

[[t ; (f , get д)]] = [[t]] +v
get д
→ (f ,vkn ∪ ukn,vmem ∪ umem)

join
← u

(C-get)

Fig. 5. Function [[·]] builds a computation graph G from a trace t .

The standard notion of visibility (definition 4.2) ensures that a value d can only be read when

the last write that happened before this read produced d . Rule C-async ensures that the forked
task is labeled with a fresh identifier f . The continuation node of f extends its knowledge (as per

rule T-async) and local memory with the new task identifier д. Rule C-get states that when task д
joins with task f , the value returned by future f must be in vmem. Then the continuation node

extends its local memory with that of vmem. Similarly, it extends its knowledge with ukn (following
rule T-get).

The computation graphs associated with traces t1 and t2 are the graphs G1 = [[t1]] and graphs

G1 = [[t2]], respectively, both presented in the previous section.

4.3 Results
The main result of this paper, corollary 4.8, states that data-race freedom implies deadlock freedom.

An important result says that if node v knows a task f and v happens before a node u, then u
also knows f .

Lemma 4.3. If [[t]] = G, f ∈ vkn, and v ⪯G u, then f ∈ ukn.

Proof. The proof follows by induction on the structure of trace t . We show that for each

edge v
l→ u in graph [[t]] if f ∈ vkn, then f ∈ ukn, which holds since in every rule of figure 5 the

outgoing nodes of each new edge extend the knowledge of the source node v . □

We can now use lemma 4.3 to establish another important result: in a DRF computation graph,

any task in the memory of a node is known. Such result can be proved if we simultaneously show

that any visible task name is known by the writer node.

Lemma 4.4. Let [[t]] = G be data-race free graph.
(1) If v ∈ G and д ∈ vmem, then д ∈ vkn.
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(2) If v produces a visible side-effect f in r , then f ∈ vkn.

Proof. The proof of the two cases is by induction on the structure of the trace t . We show a few

cases.

Part (1). When [[t]] = [[t ′]] + v
rd r д
→ u, given д ∈ umem we want to show that д ∈ ukn. From

Rule C-read, we have that some nodew produced a visible side-effect д in r . Hence, from (2) we

have that д ∈ wkn. But since [[t]] is DRF, and nodes w and u are accessing r , then we have that

w ⪯G u. So, from д ∈ wkn,w ⪯G u, and lemma 4.3, we have that д ∈ ukn.

Part (2). When [[t]] = [[t ′]] +v
wr r д
→ u, we have that u writes д visible in r and we are showing

that д ∈ ukn. From Rule C-write, we have that д ∈ umem. And, from (1), since we have д ∈ umem,

then we have д ∈ ukn, thus concluding this case. When [[t]] = [[t ′]] +v rd r d→ u = G , we have thatw
produces a visible side-effect д in r , and we want to show that д ∈ wkn. From Rule C-read we have

there exists some nodew ′
that writes d in r . But since [[t]] is DRF, we can show that the visible side

effects to r are unique, which means thatw ′ = w and d = д. Finally, we show thatw produces the

same visible side-effect in [[t ′]], and conclude with the induction hypothesis. □

Next, we establish a relation between the knowledge in a DRF graph and ⊢ t : K .

Lemma 4.5. Let t be a trace such that [[t]] is data-race free and ⊢ t : K . Then vkn ⊆ K(vtid), for all
node v in [[t]].

Proof. The proof is by induction on the structure of trace t . □

Theorem 4.6 (DRF implies KJ). If [[t]] is data-race free then ⊢ t : K , for some K .

Proof. The proof is by induction on the structure of trace t . The interesting case is when t is

of the form t ′; (f , get д), hence [[t]] = [[t ′]] + v
get f
→ u

join
← w where vtid = д and f ∈ vmem (w.r.t.

Rule T-get). We want to show that ⊢ t ′; (д, get f ) : K[д := K(f ) ∪ K(f )], given that ⊢ t ′ : K is our

induction hypothesis. Applying T-get we are left with showing that f ∈ K(f ). From the hypothesis

that f ∈ vmem and Lemma 4.4 we have that f ∈ vkn. So, since д = vtid and f ∈ vkn, then can

conclude with Lemma 4.5. □

It is important to note that the contrapositive of theorem 4.6 can be read as: if KJ fails, then DRF

fails. But since not-DRF means that there is a data race, we conclude that if KJ fails, then there is a
data race.
To discuss deadlock avoidance, we concentrate ourselves on a certain class of wait-for graphs,

namely well-formed graphs. The intuition is that, in a well-formed WFG, a task f can only await

task д if д is in the local memory of f . Since computation graphs record memory operations we

have enough information to specify the meaning of well formed graphs.

Definition 4.7 (Well-formed WFG). We say that (V ,E) is well-formed WFG w.r.t. a trace t , if
(f ,д) ∈ E implies that there is some sink node v ∈ [[t]] such that vtid = f and д ∈ vmem.

Corollary 4.8 (DRF implies DF). Let (V ,E) be a well-formed WFG w.r.t. trace t . If [[t]] is data-race
free, then (V ,E) is acyclic.

Proof. From theorem 4.6, we have that ⊢ t : K . Next, we show that (V ,E) ⊆ kg(K): since (V ,E)
is well formed. If f joins with д, then from lemma 4.4 there exists some node v such that vtid = f
and д ∈ vkn. Thus, from theorem 3.3 we have that (V ,E) is acyclic. □

The contrapositive of corollary 4.8 lets us conclude that if a program deadlocks, then there must
have been a data race during its execution. This means that we now have two methods of proving
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that a computation graph, say [[t2]], has a data race: either by providing an evidence of a data race

(definition 4.2), e.g., between nodes v7 and u2, or by applying the contrapositive of corollary 4.8 to

a cyclic, well-formed WFG (definition 4.7). For instance, the following WFG

({д,h}, {(д,h), (h,д)})

is cyclic and well-formed with respect to [[t2]], thus [[t2]] has a data race. The WFG is well formed

because edge (д,h) is derived from (u2)tid = д and h ∈ (u2)mem, and edge (h,д) is obtained from

(w2)tid = h and д ∈ (w2)mem.

5 GORN: EXTENDING HABANERO-JAVAWITH KNOWN JOINS CHECKS
This section introduces Gorn, our implementation of Known Joins. First, we discuss the integration

of Gorn in the Habanero Java language, and then delve into implementation details on checking

the Known Joins property.

5.1 Integrating Gorn in Habanero Java
We recall that the result that data-race freedom implies KJ only holds for programs that use futures

as the sole synchronization mechanism. Habanero-Java programs that synchronize via isolated

blocks or volatile variables void such guarantee. However, the result that KJ implies deadlock

freedom can be extended to the deadlock-free programming model of Habanero.

Integrating Gorn in Habanero Java (HJ) corresponds to extending the parallel runtime so that

it includes calls to our verification algorithm. We integrated Gorn in two different flavors of HJ,

so as to maximize the set of programs that can be checked: Habanero-Java [Cavé et al. 2011],

an extension of the Java language with the Habanero primitives as language constructs, and hj-

lib [Imam and Sarkar 2014], a Java 8 library that offers the Habanero primitives as library calls.

Every HJ program runs as-is in a HJ runtime verified by Gorn. Deadlocks are treated as runtime

errors, so tasks may catch the exception and try to recover from deadlocked situations.

Deadlock avoidance. The deadlock-free Habanero programming model consists of the following

synchronization constructs. When adding futures to such a programming model, deadlocks can

only arise from the interaction among future tasks.

Isolated blocks: instruction isolated B runs a block of code B atomically. Isolated blocks de-

fine critical sections.

Deadlock safety: The code block B cannot invoke (directly or indirectly) blocking opera-

tions. Thus, this form of mutual exclusion cannot deadlock against other synchronization

mechanisms.

Phasers: represent a logical group of tasks that synchronize together repeatedly in a stepwise

fashion, generalizing the classical all-to-all barrier synchronization. The set of tasks partaking

in a phaser (i.e., its members) can change dynamically. Synchronization advances stepwise

in all-to-all synchronization. The static method nextAll synchronizes the execution of the

members of a phaser: it blocks until every member invokes nextAll, or leaves the group.

Deadlock safety: Instruction nextAll synchronizes on all phasers the task is a member of to

avoid deadlocks among different groups of tasks (phasers). Additionally, futures cannot be

registered with phasers, forbidding their interaction.

Finish blocks: instruction finish B executes a block of code B and declares a syntactic scope

at the end of which the current task awaits the termination of any task forked within B.

This includes any descendant of the task executing B. Finish blocks can be nested and allow

programmers to write fork-join computation, e.g., recursive divide and conquer.

Deadlock safety: Finish blocks do not interact with futures nor with mutual exclusion. A
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Table 1. Comparing worst-case time and space complexities, where n is the number of tasks forked.

Vector Clock Snapshot-Set
Time before fork O(n) O(1)
Time after fork O(1) O(1)
Time before join O(n) O(n)
Time after join O(n) O(1)
Space O(n2) O(n)

task drops all phasers at the end of a finish block, avoiding deadlocks between these two

mechanisms.

Leveraging the finish construct. For programs checked by Gorn, a finish block acts as a scope of

verification: any history captured in the block is garbage collected at the end of the scope. This lets

the programmer trim the size of the history (known-set). In section 6.2, we change a benchmark

program and surround a computation stage with a finish block, thus lowering the memory usage

overhead of verification.

Integration details. The HJ compiler adds calls to Gorn runtime as a bytecode-level transformation

pass implemented on HJ’s Parallel Intermediate Representation (PIR) [Nandivada et al. 2013]. The

PIR extends Soot’s Jimple IR [Vallée-Rai et al. 1999] with parallel constructs such as async, finish,

and future. The instrumentation pass adds the necessary calls to Gorn at future task forks, future

get operations, and at the start and end of finish blocks. In the hj-lib version, the instrumentation

pass is not needed, as there is no code generation stage. Instead, the various calls to Gorn are

included in the runtime itself.

5.2 Implementation
As an HJ program runs, Gorn performs the following four kinds of operations: i) before forking,

the parent task copies its known tasks to the child task; ii) after forking, the parent task registers

the child in its known tasks; iii) before task f joins with task д, a membership test of task д in the

known tasks of task f is performed; and iv) after task f joins with task д, task f merges its known

tasks with that of д.
When KJ is false Gorn notifies the user of a data race and then invokes Armus [Cogumbreiro

et al. 2015], a standard deadlock avoidance algorithm. In case of a deadlock, Armus throws an

exception, disallowing the task from entering the deadly embrace; the user may catch the exception

to recover from the synchronization error. Additionally, before testing KJ, our implementation

tests if the task to join is still alive; terminated tasks do not introduce deadlocks and are therefore

ignored. This means that a task only checks if it knows another task at most once. Gorn can also be

run in a strict-mode, where any get of an unknown task throws an exception, i.e., when KJ is false

an exception is raised and Armus is not invoked.
We present two implementations of KJ: one uses vector clocks and another one uses snapshot-sets

(a data structure we introduce). Table 1 compares the worst-case time and space complexities of

the two algorithms. We experimented with other algorithms, namely interval-tree clocks [Almeida

et al. 2008], but their performance was unsatisfactory.

Implementing KJ with vector clocks. A node v can join with task д if the continuation of forking

д happens-before node v .
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Definition 5.1 (Can-join). Nodeu is the fork-point of task f in a graphG ifv
async f
→ u ∈ G . Nodew

can join with task f if v is the fork-point of f and v ⪯G w .

Theorem 5.2. Let ⊢ t : K and v ∈ [[t]]. Then f ∈ K(vtid) if and only if v can join with f .

Theorem 5.2 allows us to implement KJ using vector clocks. The importance of this result is

twofold: sets an expectation on the time and space bounds of the problem, and lets us benefit from

the vast literature on causality analysis. A vector clock is an efficient representation of the causality

relation, hence equivalent to using computation graphs, see Schwarz and Mattern [1994, Theorem

3.3]. This means that we can implement definition 5.1 to test (using e.g., vector clocks) whether f
can join with д, as it can be formulated in terms of a happens-before relation.

A vector clock is a map from tasks to integers that represents (i) a node in the computation graph,

and (ii) the reachability relation of the predecessors of (i). The worst-case time complexity for vector

clocks is linear in the number of tasks, while for graphs is quadratic in the number of nodes, cf.

section 7. The lower bound of the number of nodes is always the number of tasks. The worst-case

space complexity for vector clocks is quadratic in the number of tasks; for graphs is linear in the

number of nodes. The rules for maintaining causality using clocks are standard [Flanagan and

Freund 2009].

Implementing KJ with snapshot-sets. This implementation pairs a hash-set of children with the

joins, a binary tree of sets of tasks representing unions. The algorithm snippets are written in a

Haskell-inspired language. A KnownSet pairs two fields: field forks is the set of (forked) tasks of

type Children, and field joins holds a join tree. A branch in a join tree holds either a set of children

or merges join trees.

data Children = Set Task

data Joins = Leaf Children | Branch Joins Joins

type KnownSet = {forks::Children , joins::Joins}

Before task f forks task д. The set known tasks of д is initialized with a copy of the tasks known

to f : the forks of the task start empty, and the joins compose a copy of the forks of the parent,

copy ks.forks, with the joins of the parent task.

child :: KnownSet -> KnownSet

child ks = {forks: empty , joins: Branch (Leaf (copy ks.forks)) ks.joins}

The worst-case time complexity for this operation depends on the worst-case time complexity

of copying the hash-set ks.forks. Instead of duplicating forks, our implementation of the copy

function creates a snapshot in constant time (see below).

After task f forks task д. Task f updates its known tasks using function add, which consists of

adding task д to its children set ks.forks using the set insert operation.

add :: KnownSet -> Task -> KnownSet

add ks f = {forks: insert f ks.forks , joins: ks.joins}

Before task f joins with task д. Before joining, task f tests if д is a member of its known tasks

using function contains. The search for task д starts in children set ks.forks and continues depth-

first through the join tree ks.joins, using function isIn. The navigation order is important: a

depth-first order favors reaching tasks available via the most recent joins first, which matches the

usual synchronization patterns.
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contains :: KnownSet -> Task -> Bool

contains ks f = f `member ` ks.forks || isIn ks.joins

where isIn (Leaf s) = f `member ` s

isIn (Branch l r) = isIn l || isIn r

The complexity of searching a tree is O(n) where n is the number of tasks in the tree. The tree

might contain multiple paths to the same task, arising from concurrent joins. The search algorithm

avoids revisiting nodes by maintaining a set of traversed nodes.

After task f joins with task д. Task f extends its known tasks using function union, which

branches to the join-tree joins of task д (discussed below). This is a constant-time operation.

union :: KnownSet -> Join -> KnownSet

union ks j = {forks: ks.forks , joins: Branch j ks.joins}

Before terminating, each task converts its known tasks ks to a join-tree with function convert.

convert :: KnownSet -> Joins

convert ks = Branch (Leaf ks.forks) ks.joins

Concurrent hash-sets with constant time copying. We introduce a novel technique called snapshot-
sets. There are two data structures to consider: a timed set that labels the members of a set with

logical time, and a snapshot (an immutable (cheap) copy of a timed set). In a timed set, the time

increases monotonically as elements are added. A snapshot consists of a reference to a timed set and

the logical time of the last added element at the time of creation—in our code snippets function copy

should yield a snapshot. Any member of a timed set whose time is within the snapshot’s time is

also a member of the snapshot.

In our implementation the set of children is a timed set. When forking a task the parent passes

a snapshot of its children set to the forked task. A task and its descendants can access the same

timed set concurrently: a parent can extend its child set while a descendant runs a membership

test. Any task added to the timed set will not be visible in existing snapshots. When a membership

test reads a newer value, the snapshot’s time will be smaller than the new element’s time, which

makes the new contents invisible.

Implementing a timed set with a hash map. We designed a hash map that allows for one writer and

multiple readers to run concurrently under the usage constraints of Gorn. The elements of the hash

map are immutable pairs, consisting of a task name and an integer. Our hash map implementation

uses open addressing and only supports two operations: put and lookup. Adding a member to a

timed set corresponds a put in the hash map. Testing the membership of an element corresponds to

a lookup in the hash map. An add operation (the writer) can run concurrently with one or more

membership tests (the readers), because they operate on disjoint portions of the data structure.

Synchronization guarantees. While we have seen that there is no need for explicit synchronization,

wemight still wonder whether there needs to exist some form of stronger memorymodel guarantees.

Our implementation of snapshot-sets does without compare-and-swap operations, atomics, or

volatiles. When forking a task there is a happens-before relation between the parent and the child,

which, according to Java’s memory model [Manson et al. 2005], guarantees that the child can

observe every element in the timed set at the time of forking. While any new elements are not

guaranteed to be observed by the descendants, these do not affect the membership tests because

the timestamps of the new elements are greater than the timestamp of the snapshot (hence skipped

by the membership test).
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The only two possible sources of inconsistency between writer and readers come from: (i) re-

creating the backed array of the hash map, and (ii) re-creating a bucket. The members of the hash

map are thread-safe because these are immutable. We address the writer-readers inconsistencies

from (i) and (ii) with the copy-on-write pattern, therefore enforcing that concurrent reads always

target a consistent backed array. For instance, the writer rehashing a map first creates a new

backed-array, then the writer copies the map’s contents to the new array, and, finally, the writer

switches the backed-array reference to the new array. The Java memory model guarantees that

references are written and read atomically.

6 EVALUATION
In this section we use Gorn to check a data-set of ∼2.300 student’s assignments, and measure the

runtime overhead of the verification. We also measure runtime and memory overheads for five

benchmarks. These benchmarks explore how Gorn scales in worst-case scenarios. The overhead

of deadlock avoidance depends on the number of forks, joins, and the structure (“shape”) of the

computation graphs. Therefore, we favored benchmarks with distinct synchronization patterns,

yielding computation graphs of different shapes. One of the selected benchmarks forks and joins

close to 1 million tasks, as to explore the limits of the verification.

The KJ algorithm is validated against a test suite, which consists of 141 test cases specifically

written for Gorn, checking the legal and disallowed joins of each task (scenarios include recur-

sive divide-and-conquer; multiple forks followed by multiple joins; forks interleaved with joins).

Additionally we run Gorn on hj-lib’s test suite, which consists of 387 test cases, including 12

deadlocking programs.

6.1 Checking a Dataset of Student Submissions
Gorn verified a large corpus of parallel HJ programs written by undergraduate students in an

introductory parallel programming course. These programs are collected from an auto-grading

system, meaning that we have access to both final submissions and works-in-progress. The corpus

contains ∼26,000 student submissions from ∼40 assignments by ∼250 students. We restricted the

dataset to submissions that make use of futures, totaling 2,277.

Our goals with this investigation are two-fold. First, we can think of few better stress tests

for Gorn than applying it to a dataset of chaotic, partial, and often buggy student programs that

create large numbers of tasks. Testing across such a diverse dataset increases our confidence in the

stability of Gorn as a software artifact and in its lack of false positives. Second, we demonstrate

that deadlocks are a real problem for students learning parallel programming for the first time,

reinforcing the value of Gorn as a pedagogical tool.

In total, during our testing we found one final submission by a student for which Gorn identified

and reported a deadlock. The assignment is to write a space- and time-efficient parallel implemen-

tation of Smith-Waterman’s genome alignment algorithm, given a sample sequential version. This

is a non-trivial task and requires a major re-architecting of the sequential algorithm to support

processing of an alignment problem that does not fit in memory while still extracting enough

parallelism for a 16-core systems. In general, top students in the class achieve 10–12× speedup over

the reference sequential implementation. Testing requires ∼160 seconds for the fastest submissions.

We examined the deadlocking submission in detail. The student’s commit messages and report

indicate that while she knew her program had an issue that was causing it to run longer than

expected, she was unable to diagnose it in time for the assignment deadline and instead blamed

the auto-grading system. The student’s report incorrectly states that the program is data-race free.

Gorn’s diagnostic information would have greatly eased resolving this deadlock, and might have

resulted in the student gaining full credit on the assignment. First, Gorn’s early detection and abort
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Table 2. List of benchmarks evaluated. #Asyncs is the dynamic number of asyncs performed. #Gets is the
dynamic number of gets performed.

Benchmark Input Size #Asyncs #Gets

Jacobi 8192 × 8192 15,872 37,696

Smith-Waterman 21,000 1,600 4,641

Crypt (Size C) 50,000,000 16,384 16,384

Strassen 4096 × 4096 30,811 44,816

Series (Size C) 1,000,000 999,999 999,999

behavior would have avoided the student having to wait for the deadlocking program to hit the

autograder’s 40 minute timeout, speeding up development iterations. In this particular submission,

it takes 3 seconds to reach the deadlock. Second, with Gorn, diagnosing and fixing the deadlock is

simplified, as the error message includes file location of the unknown join, and the tasks involved

in the deadlock. We have checked 2,277 programs and found no example that was both rejected by

KJ and deadlock free.

Example of the Deadlock. The code excerpt below exhibits the deadlock discovered by our tool.

At the i-th iteration a task stores a future in S[i]; this future awaits futures f1, f2, and f3 (line 87).

The deadlock occurs when future f1 awaits the future in S[i]which, in turn, awaits the termination

of f1. Future S[i] knows f1, but future f1 does not know S[i], hence the get in line 82 raises an

exception.

76 for (int i = 1; i <= yLength; i++) {

77 // ...

78 final Future <Integer > f1 = async{

79 return S[i - 1]. get() + getScore(charMap(XChar), charMap(YChar)));

80 };

81 final Future <Integer > f2 = async{

82 return S[i].get() + getScore(charMap(XChar), 0));

83 };

84 final Future <Integer > f3 = async {

85 return S[i - 1]. get() + getScore(0, charMap(YChar)));

86 };

87 S[i] = async { return Math.max(f1.get(), Math.max(f3.get(),

f2.get())); };

88 }

The error message consists of a stack trace, from which we elide the internal calls of the parallel

runtime. Recall that these errors can be caught by tasks.

1 gorn.DeadlockIdentifiedException: [Event[synch=ParallelFuture[id=65],

phase=1], Event[synch=ParallelFuture[id=67], phase =1]]

2 [...]

3 at SparseParScoring.lambda$scoreSequences$13(SparseParScoring.java :82)

4 [...]
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6.2 Verification Overhead
We compare the baseline (a program run without verification) against a program running with

deadlock avoidance and: KJ disabled (KJ OFF), KJ enabled with vector clocks (KJ VC), and KJ

enabled with snapshot sets (KJ SS). As explained in section 5.2, when KJ is enabled Armus is still

maintaining the blocked status of each task, but cycle detection only runs in case of a data race.

Also, as mentioned in the same section, the search algorithm for KJ SS avoids revisiting nodes by

maintaining a set of traversed nodes. The results shown in this section were obtained without

this optimization. However, we subsequently obtained execution times for KJ SS with and without

this optimization, and saw no measurable difference between these two cases, thus indicating

that maintaining the set of traversed nodes does not improve performance for these benchmarks.

Our experiments are conducted on a 16-core Intel Ivybridge 2.6 GHz system with 48 GB memory,

running Red Hat Enterprise Linux Server release 7.1, and Sun HotSpot JDK 1.7.

The benchmarks used in the evaluations are summarized in table 2. The columns list the bench-

mark name, the input size used for the evaluation, the number of tasks dynamically created, the

number of joins performed by each of the programs. Crypt and Series were derived from the

original versions in the Java Grande Forum benchmark suite [Smith et al. 2001]. Jacobi and Strassen

were translated by the authors from OpenMP versions of those programs in the Kastors benchmark

suite [Virouleau et al. 2014]. Futures are more general than deadlock-free group termination con-

structs like finish, and are used to express point-to-point synchronizations in all our benchmarks.

Using finishes instead could lead to a loss of parallelism relative to the future-versions of these

benchmarks.

Jacobi performs a 2 dimensional 5-point stencil computation on a 8192 × 8192 matrix, where

each future task computes a 512 × 512 sub-matrix. This benchmark is chosen to demonstrate

the performance impact of KJ on programs with complex point-to-point synchronization arising

from the use of futures. These kind of computation graphs cannot be generated using structured

task-parallel constructs such as async-finish or fork-sync. In the presence of such point-to-point

synchronization, tasks have distinct non-null history information. Synchronization pattern: point-
to-point synchronization between sibling tasks.

Smith-Waterman performs sequence alignment of two sequences of length 21,000. The alignment

matrix computation is performed by 40 × 40 future tasks. With a different dependence pattern

from Jacobi, this benchmark exhibits complex point-to-point synchronization and demonstrates

the generality of computation graphs that can be generated using futures. Unlike Jacobi which

makes multiple passes over the matrix, this benchmark performs its computation in a single pass

through the alignment matrix. Synchronization pattern: point-to-point synchronization between

sibling tasks.

Crypt Adapted from JGF [Smith et al. 2001], this benchmark performs IDEA encryption and

decryption. Both encryption and decryption steps are parallelized using futures. The main program

first performs encryption by forking a set of tasks and joins with the set of forked tasks. Next,

it performs decryption by again forking a set of tasks and then joins with the forked tasks. This

benchmark demonstrates the performance impact of having large history information. During the

decryption step, the known set corresponding to the main task is huge due to the joins performed

by it after the decryption step. Synchronization pattern: consecutively runs a series of forks followed
by a series of joins.

Strassen performs multiplication of 2 matrices of 4096 × 4096 floating point numbers using a

recursive divide and conquer approach with futures. The implementation uses a recursive cutoff of

128×128, i.e., sub-computations of this smaller size are performed sequentially. Recursive divide and

conquer is a very common paradigm found in task-parallel programs and therefore it is important

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 103. Publication date: October 2017.



Deadlock Avoidance in Parallel Programs with Futures 103:21

Table 3. Comparison of overhead for deadlock avoidance, on 16 cores. The Baseline column lists absolute
values of the unchecked execution: time in seconds and space in gigabytes. The next three columns list the
ratio between verified and baseline. Armus is always enabled. In KJ OFF, KJ is disabled, so only Armus runs.
In KJ VC, KJ is enabled using vector clocks. In KJ SS, KJ is enabled using snapshot-sets.

Benchmark Baseline KJ KJ KJ
OFF VC SS

Jacobi 8.12s 5.84× 1.10× 0.99×
0.31GB 1.08× 1.00× 1.00×

Smith- 4.70s 1.80× 0.96× 0.96×
Waterman 3.61GB 1.02× 1.00× 1.00×
Crypt 0.77s 193.25× 10.15× 1.04×

0.29GB 1.48× 16.90× 1.08×
Strassen 3.13s 28.49× 0.99× 1.07×

5.48GB 1.63× 1.01× 1.28×
Series 37.55s - 1.00× 1.06×

1.00GB - 2.02× 2.34×

to study the performance impact of KJ on such programs. Synchronization pattern: a tree-shaped
computation graph.

Series.Adapted from JGF and computes the first Fourier coefficients of the function f (x) = (x+1)2
on the interval 0,2. The most time consuming component of the benchmark is the loop over the

Fourier coefficients. Each iteration of the loop is independent of every other loop and the work may

be distributed simply between processors. This benchmark is chosen to demonstrate the scalability

of KJ since it creates 1 million tasks. Synchronization pattern: one task performs multiple forks

followed by multiple joins.

Summary. Table 3, figure 6, and figure 7 compare the runtime and memory overhead of using the

different deadlock avoidance algorithms. Table 3 serves as a bird’s-eye view of the data, whereas

the bar charts compare the two algorithms implementing Known Joins against the baseline. To

reduce the impact of JIT compilation, garbage collection and other JVM services, we report the

steady state mean execution time of 30 runs repeated in the same JVM instance for each data point,

as recommended by Georges et al. [2007]. In short, there are three takeaways. First, the evaluation

shows that runtime and memory overheads for deadlock avoidance are lower (better) with KJ

enabled, as opposed to standard cycle detection (KJ OFF). Second, verification using snapshot-sets

offers a better memory usage in average than using vector clocks. Third, vector clocks exhibit a

reasonable performance, and benefit from being a well-understood data structure, specially when

verifying programs with finish blocks.

Runtime overhead. When KJ is enabled, VC and SS have comparable overheads for all benchmarks

except Crypt, where the overhead is much higher for KJ VC. Crypt runs two stages in sequence,

first it performs encryption, then it performs decryption. At each stage a main task forks a group

of child tasks and then awaits the completion of these children. If we refer back to table 1, we note

that forking and merging are linear operations when implemented with vector clocks. This means

that at the second stage, the vector clock of the main task has the size of the number of tasks forked

when encrypting; such a vector clock is then copied to each child and merged when joining each
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Fig. 6. Average execution times in milliseconds and 95% confidence interval of 30 runs for Baseline, KJ (VC)
and KJ (SS) on 16 cores.

child, both in linear time. If we change the program and surround each stage with a finish block,

then Gorn is able to reclaim the memory at the end of each stage, so enabling the overheads of VC
match the ones of SS. The execution of the Series benchmark did not complete in 4 hours when

performing deadlock avoidance without KJ; enabling KJ yields a runtime overhead of 1.06× for

SS and a statistically negligible overhead for VC. This is because in standard deadlock avoidance,

before blocking each task performs cycle detection that is quadratic in the number of tasks running

concurrently, which, in the case of Series, can be up to one million tasks.

Memory overhead. To compute the memory usage, we created a daemon thread that periodically

invokes the totalMemory() and freeMemory() methods from class java.lang.Runtime. The
difference between the total memory available and the free memory approximates the memory

usage of the application at a particular instant. We run the benchmarks 30 times on the same JVM

instance. Average memory usage shows the arithmetic mean of the memory usage of the program,

sampled every 100 milliseconds. We plot the memory usage between the baseline, KJ (SS), and KJ

(VC) in figure 7.

The results indicate that enabling KJ reduces the memory overhead of deadlock avoidance. The

benchmarks use exclusively futures to synchronize, so Gorn cannot take advantage of finish blocks

to garbage-collect verification and better use memory. The outcome is that Gorn can verify these

programs with a negligible memory overhead. For snapshot sets the memory overheads range

from 1.04x to 2.34× with snapshot sets. For vector clocks, we have the case of Crypt where the

memory overhead is 16.90×, which suggests the limitation of having a worst-case O(n2) space
requirement for vector clocks, versus a O(n) for snapshot sets. To illustrate how finishes can

improve the memory usage we inserted a finish block around the encryption step; the result was

KJ (VC) matching the performance of KJ (SS).
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7 RELATEDWORK
The deadlock avoidance problem. The problem of deadlock avoidance is a very well studied

problem that dates as far back as 1960’s, with Dijkstra [1965] Banker Algorithm. Minoura [1982]

and Reveliotis et al. [1997b] cover the problem complexity in deadlock avoidance with complex

synchronization patterns. The focus of our paper is on deadlock avoidance specialized for awaiting

task termination.

In this paper we discuss two alternatives to mitigate deadlocks on awaiting task termination,

one is ensuring the absence of data races (theorem 4.6), the is other by enforcing KJ. Welc et al.

[2005] tackle the former problem by ensuring that the concurrent execution of a program with

futures follows a valid serial execution, which implies the absence of data races. Similarly, Navabi

et al. [2008] present an inter-procedural dataflow analysis for programs with futures that preserve

sequential semantics with the help of a lightweight runtime. These two approaches yield stronger

correctness guarantees by limiting the set of possible schedules.

Cogumbreiro et al. [2015] introduced a deadlock detection/avoidance algorithm for multiple

synchronization mechanisms, including futures, by performing cycle detection on wait-for depen-

dencies. Deadlock detection can be performed fully asynchronously, so the runtime overhead is

usually negligible. Deadlock avoidance, however, must perform cycle detection every time a task

blocks, which can cause severe slowdowns, as demonstrated in section 4.3.

Transitive closure. Instead of testing whether the wait-for dependencies are cyclic, we can test if

a given blocked task can reach itself through the wait-for dependencies. The reachability problem

can be solved by maintaining the transitive closure of the reachability relation, but the theoretical

bounds are worst when compared to cycle detection. Computing the transitive closure from scratch

can be solved with matrix multiplication [Munro 1971]; the best known algorithm solves this

problem in O(n2.376) [Coppersmith and Winograd 1990]. Alternatively, the transitive closure can be

maintained dynamically [Demetrescu and Italiano 2005], but updating the graph takes O(n2) time.

Furthermore, maintaining the transitive closure usually assumes a fixed set of vertices throughout

the execution, and the problem is compounded since updates and tests run concurrently.

Data-race detection. There are three general approaches for detecting concurrency defects: static
analysis, dynamic analysis, and a combination of the two. By admitting some restrictions on the
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programming model, static analysis of certain classes of errors, such as deadlocks and atomicity

violations, becomes more tractable [Boyapati et al. 2002b; Engler and Ashcraft 2003].

Dynamic analysis approaches identify races in an execution for a particular input. Causality-

based methods [Banerjee et al. 2006; Flanagan and Freund 2009; Ha and Jun 2015] only identify

data races that actually happened, and are usually implemented with vector clocks. Causality-based

approaches suffer from a scalability problem, as the causal history can grow unbounded. For instance,

in vector-clock-based techniques the logical time grows as a task produces more events, and the

vector grows whenever a task forks another. Almeida et al. [2008] propose interval tree clocks as an

alternative to vector clocks that can dynamically compact the causal history by reusing the same

“task identifier” for multiple tasks. Techniques, such as using chain decomposition [Raychev et al.

2013], can also alleviate the history growth. Alternatively, summary-based methods [Savage et al.

1997] sacrifice preciseness to improve performance. For parallel programs that do not manipulate

locks and restrict how tasks can join with other tasks, e.g., only parent-child joins, a single execution

is sufficient to identify if any data race exist in any execution [Feng and Leiserson 1997; Mellor-

Crummey 1991; Raman et al. 2012; Surendran and Sarkar 2016]. Surendran and Sarkar [2016] uses

disjoint-sets to encode causality. Such data structure offers good space and time complexities, but

assumes a global state. Maintaining a global state is impractical in concurrent dynamic analysis, as

is the case of KJ.

8 CONCLUSIONS AND FUTUREWORK
In this paper we introduce a theory of futures and shared memory programming, and show that

race conditions are the sole root cause for deadlocks. To the best of our knowledge our work is the

first to build a mathematical argument on the root cause of deadlocks in this context. A novelty

of our approach is on using causality to avoid deadlocks. The deadlock avoidance algorithm we

introduce runs in O(n) time and space, where n is the number of tasks forked. This algorithm is

implemented in the Habanero-Java runtime as a tool called Gorn and exhibits a slowdown of around

1.06× for a program with 1 million tasks on a 16-core machine. Gorn verified a dataset of ∼2,300
student homework solutions and found one deadlocked program. Furthermore, the evaluation of

Gorn on student assignments shows the potential for such tools in parallel programming courses,

including online courses that rely on autograding.

Opportunities for future work include both theoretical and algorithmic developments. We are

interested in applying programming analysis methods that would allow us to tackle other results,

such as determinism and serial equivalence. This paper introduces a novel approach of handling

deadlock avoidance with causal history. It would also be interesting to try and extend this approach

to other synchronization mechanisms. Promises seem a natural candidate, but pose a serious

difficulty to dynamic verification, as it is not possible to know at runtime which task must fulfill

the promise and therefore derive runtime dependencies as in this work.
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