
Deadlock Avoidance in Parallel
Programs with Futures

Why Parallel Tasks Should Not Wait for Strangers

Tiago Cogumbreiro, Rishi Surendran, Francisco Mar�ns,
Vivek Sarkar, Vasco Vasconcelos, Max Grossman

OOPSLA, Vancouver, 2017

1 / 26

Futures
Fork-join model + Data

2 / 26

Widespread use of futures
1. Asynchrounous programming

Language support (async, await): Python, Javascript, Rust

2. Task parallel programming

Language support: Java, C#, C++, Kotlin
Library support: C++ (TBB, Kokkos, Charm++), Java (HJ-Lib, Quasar)

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 3 / 26

Uses of futures with shared memory
Task-DAG parallelism

Data-flow parallelism
Shared collec�ons of futures (matrices)

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 4 / 26

Uses of futures with shared memory
Task-DAG parallelism

Data-flow parallelism
Shared collec�ons of futures (matrices)

Problem: Cyclic data-dependencies cause deadlocks!

Off-by-one errors cause deadlocks

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 4 / 26

Shared memory and futures
Intui�on:

Root-cause of future-deadlocks are data races.

1. Is it true?
2. Why?
3. How can we use this property for verifica�on?

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 5 / 26

Outline
1. Futures and its deadlocks

2. Known Joins ⇒ DF: Deadlock avoidance with futures & benchmarks

3. DRF ⇒ Known Joins: How DRF enjoys Deadlock-Freedom

4. Conclusion and future work

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 6 / 26

1. Futures and its deadlocks

7 / 26

async: (unit→T) → Future<T>

Control: Forks a task A
Data: Returns the future value of
type Future<T>

get: Future<T> → T

Control: Joins with task A
Data: Returns the value of type T
"produced" by task A

Futures: Tasks that "return" values

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 8 / 26

// Task P
1 shared Future<Integer> x, y;
2 x = async(() -> y.get()); // Task A
3 y = async(() -> x.get()); // Task B

1. P forks A writes to x
A waits for the task in y

2. P forks B writes to y
B waits for the task in x

Deadlocked example

Data-race causes 2 traces

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 9 / 26

Trace 1 (no deadlock)

1 shared Future<Integer> x, y;
2 x = async(() -> y.get()); // y = null
3 y = async(() -> x.get());

Task P Task A Task B
fork A read y null read x A

write x A get A

fork B

write y B

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 10 / 26

Trace 2 (deadlock)

1 shared Future<Integer> x, y;
2 x = async(() -> y.get()); // y = B
3 y = async(() -> x.get());

Task P Task A Task B
fork A read y B read x A

write x A get B get A

fork B

write y B

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 11 / 26

Proving DRF ⇒ DF
DRF ⇒ $POLICY ⇒ DF
Deadlock-freedom policy valid in all DRF programs

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 12 / 26

2. Known Joins ⇒ DF
Deadlock avoidance with futures & benchmarks

13 / 26

Known-Joins implementation overview
Program start (empty-known set)

async

1. Before: parent copies known-set to child
2. A�er: parent extends known-set with new task

get

1. Before: membership-test fail ⇒ POLICY ABORT
2. A�er: merge known-set of task

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 14 / 26

Running example knowledge
Knowledge: {}

1 shared Future<Integer> x, y;
2 x = async(() -> y.get());

Knowledge: {A}

3 y = async(() -> x.get());

Knowledge: {A, B}

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 15 / 26

Know-Joins in practice
Habanero-Java: A Java 8 parallel programming library
Extends the deadlock-free API subset with futures!

isolated: mutual-exclusion
phaser: barrier and producer-consumer
finish: descendant task termina�on
future (with the known-joins policy)

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 16 / 26

Evaluation
2,300 assignments checked (1 unkown join, deadlocked example)
5 benchmarks

Benchmark # of async # of get
Jacobi 15,872 37,696
Smith-Waterman 21,000 4,641
Crypt 16,384 16,384
Strassen 30,811 44,816
Series 999,999 999,999

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 17 / 26

Evaluation: time overhead
Benchmark Snapshot-sets
Jacobi 0.99×
Smith-Waterman 0.96×
Crypt 1.04×
Strassen 1.07×
Series 1.06×

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 18 / 26

Evaluation: memory overhead
Benchmark Snapshot-sets
Jacobi 1.00×
Smith-Waterman 1.00×
Crypt 1.08×
Strassen 1.28×
Series 2.34×

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 19 / 26

3. DRF ⇒ Known Joins

20 / 26

Computation Graphs

Nodes: instruc�on instances
Edges: happens-before dependencies (async, get, and sequen�al)
Node annota�ons: known tasks and local memory

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 21 / 26

Knowledge flows with reachability

v4 knows g
v4 happens-before w2

w2 knows g

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 22 / 26

Knowledge must contain tasks in memory

In DRF graphs

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 23 / 26

Mechanized and proved in Coq

1. Known-Joins ⇒ Deadlock Freedom

2. Data-Race Freedom ⇒ Known-Joins

3. Know-Joins interpreta�on as a causality
query

Main results

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 24 / 26

Conclusion
Introduced a theory of futures and shared memory (CG)
Showed that data-races are the root cause of deadlocks
Talked about a deadlock avoidance tool (1.06× �me-overhead for 1 million
tasks)

Future work
Promises lack run�me-informa�on to derive deadlock detec�on
Extend the theore�cal framework for nondeterminism

Deadlock Avoidance in Parallel Programs with Futures, OOPSLA, Vancouver, 2017 25 / 26

Deadlock Avoidance in Parallel
Programs with Futures

Why Parallel Tasks Should Not Wait for Strangers

Tiago Cogumbreiro, Rishi Surendran, Francisco Mar�ns,
Vivek Sarkar, Vasco Vasconcelos, Max Grossman

OOPSLA, Vancouver, 2017

26 / 26

