
Checking Data-Race Freedom of GPU Kernels,
Compositionally

Tiago Cogumbreiro1(B) , Julien Lange2 ,
Dennis Liew Zhen Rong1 , and Hannah Zicarelli1

1 University of Massachusetts Boston, Boston, USA
{tiago.cogumbreiro, zhenrong.liew001, hannah.zicarelli001}@umb.edu

2 Royal Holloway, University of London, Egham, UK
julien.lange@rhul.ac.uk

Abstract. GPUs offer parallelism as a commodity, but they are diffi-
cult to program correctly. Static analyzers that guarantee data-race free-
dom (DRF) are essential to help programmers establish the correctness
of their programs (kernels). However, existing approaches produce too
many false alarms and struggle to handle larger programs. To address
these limitations we formalize a novel compositional analysis for DRF,
based on access memory protocols. These protocols are behavioral types
that codify the way threads interact over shared memory.
Our work includes fully mechanized proofs of our theoretical results, the
first mechanized proofs in the field of DRF analysis for GPU kernels.
Our theory is implemented in Faial, a tool that outperforms the state-of-
the-art. Notably, it can correctly verify at least 1.42× more real-world
kernels, and it exhibits a linear growth in 4 out of 5 experiments, while
others grow exponentially in all 5 experiments.

Keywords: GPU · data-race · static analysis · behavioural types.

1 Introduction

GPUs are massively parallel devices that promise a great return on investment
at a cost: they are notably difficult to program. In GPU programming, hundreds
of lightweight threads share portions of arrays in parallel (without locks) —
very different from the programming model of multithreaded programs written
in C or Java with heavy-weight heterogeneous threads. Data-race freedom (DRF)
analysis aims to guarantee that for all possible executions, every array cell being
written by one thread cannot be concurrently accessed by another thread.

In the field of static analysis of DRF in GPU programs, there is a tension
between efficiency and correctness (no missed data-races and no false alarms)
that thus far is unresolved. Bug finding tools [26, 27, 33] favor correctness over
efficiency: they provide correct results at small scales, by simulating the program
execution. Such tools are incapable of handling certain parameters symbolically
(e.g., array size) and can easily exhaust users’ resources (e.g., loops with long
iteration spaces or unknown bounds). Approaches based on Hoare logic [5,7,22]

http://orcid.org/0000-0002-3209-9258
http://orcid.org/0000-0001-9697-1378
http://orcid.org/0000-0003-1002-5677
http://orcid.org/0000-0002-3607-1746

2 T. Cogumbreiro et al.

SMT backend

§ 5

Quantification

§ 5

SMT
Barrier
splitting

§ 4.2

L
Barrier
aligning

§ 4.1

A
Well-formed

check

§ 3

W
Inference

§ 5

CUDA S

Fig. 1: Work-flow of the verification.

can cope with medium-sized programs, do not miss data-races, and do not require
array size information; however, they suffer from a high-rate of false alarms and
require code annotations written by concurrency experts. Finally, tools that can
cope with larger programs and do not require array size information either miss
data-races [24] or overwhelm the user with false alarms [37].

To appease this tension, we introduce a novel static DRF analysis that can
handle larger programs and produce fewer false alarms than related work, with-
out missing data-races. Additionally our analysis does not require code anno-
tations or array size information. Our verification framework hinges on access
memory protocols, a new family of behavioral types [1] that codify the way
threads interact through shared memory. Our behavioral types also make evi-
dent two aspects of the analysis that can be made separate: concurrency analysis
(i.e., could these two expressions run in parallel?) and data-race conflict detec-
tion (i.e., do these array indices match?).

Contributions and synopsis This paper includes the following contributions.

(1) In §3, we formalize the syntax, semantics, and well-formedness conditions
for access memory protocols, which are behavioral types for GPU programs.
This behavioral abstraction results in a simpler yet more expressive theory than
previous works, e.g., it does not require user-provided loop invariants.
(2) In §4, we show that our DRF analysis of access memory protocols can be
soundly and completely reduced to the satisfiability of an SMT formula, see
Theorems 1 and 3. Our theory and results on access memory protocols are fully
mechanized in Coq. To the best of our knowledge, this is the first mechanized
proof of correctness of a DRF analysis for GPU programs.
(3) We show that our DRF analysis of access memory protocols is compositional
when protocols satisfy a structural property, see Theorem 2. Additionally, we
show how to transform protocols when they do not meet this property.
(4) In §5 we present Faial, which infers access memory protocols from CUDA
kernels and implements our theory. Our experiments show that Faial is more
precise and scales better than existing tools.
(5) In §6, we present a thorough experimental evaluation of Faial against related
work [5, 24, 26, 27], the largest comparative study of GPU verification (5 tools
in 260 kernels, 3 tools compared in 487 kernels). Faial verified 218 out of 227
real-world kernels (at least 1.42× more than other tools) and correctly verified
more handcrafted tests than other tools (4 out of 5). In a synthetic benchmark
suite (250 kernels), Faial is the only tool to exhibit linear growth in 4 out of 5
experiments, while others grow exponentially in all 5 experiments.

Checking Data-Race Freedom of GPU Kernels, Compositionally 3

Listing 2.1: Examples of racy kernels, l.h.s. is from [34] and r.h.s. simplifies l.h.s.
for clarity, with one-dimensional array and thread identifier, and 1-stride loops.

1 for (int r = 0; r < N; r++) {
2 for (int i = 0; i<TILE_DIM; i+=BLOCK_ROWS)
3 { tile [tid.y+i][tid.x] = idata [index_in+i*width];}
4 __syncthreads();
5 for (int j = 0; j<TILE_DIM; j+=BLOCK_ROWS)
6 { odata[index_out+j*height] = tile [tid.x][tid.y+j];}}

1 for (int r = 0; r < N; r++) {
2 for (int i = 0; i<M; i++)
3 { tile [tid] = ...;}
4 __syncthreads();
5 for (int j = 0; j<M; j++)
6 {... = tile [tid+j];}}

Our paper is accompanied by an implementation (Faial), an evaluation frame-
work (inc. datasets), and proof scripts (in Coq) for each theorem. All of these
are available in our artifact [9].

2 Overview

This section gives an overview of our approach by examining a data-race we
found in published work [17] and [34]. We discuss the challenges that such ex-
amples pose to the state-of-the-art of DRF analysis. Then we introduce a veri-
fication framework based on access memory protocols: behavioral types [1] that
codify the way threads interact via shared memory. Figure 1 gives an overview
of the verification pipeline. We start from CUDA kernels, from which we infer
access memory protocols. Protocols are then checked for well-formedness and
transformed in three steps into formulas that are verified by an SMT solver.

2.1 Challenges of GPU Programming

GPU Programming Model The key component of GPU programming is the
kernel program, or just kernel, that runs according to the Single-Instruction-
Multiple-Thread (SIMT) execution model, where multiple threads run a single
instruction concurrently. A kernel is parameterized by a special variable that
holds a thread identifier, henceforth named tid. In parallel, each member of a
group of threads runs an instantiated copy of the kernel by supplying its identifier
as an argument. Threads communicate via shared memory (arrays) and mediate
communication via barrier synchronization (an execution point where all threads
must wait for each other before advancing further). Writes are only guaranteed
to be visible to other threads after a barrier synchronization.

GPU programming platforms usually group threads hierarchically in multi-
ple levels, across which no inter-groups synchronization is possible. In both the
literature [6, 24] and this work, the focus is on intra-group communication.

Challenges We motivate the difficulty of analyzing data-races by studying a
programming error found in the wild, reported in Listing 2.1 (left). This excerpt
comes from a tutorial [34] on optimizing numeric algorithms for GPUs. The code
listing transposes a matrix N-times with an outer loop indexed by variable r.

4 T. Cogumbreiro et al.

Remarkably, the tutorial [34] does not inform the readers that Listing 2.1
contains a subtle data-race: one transpose-operation starts (the writes to tile
in line 3) without awaiting the termination of the previous transpose-operation
(the reads from tile in line 6), thus corrupting the data over time and possibly
skewing the timing of the optimization to appear faster than it should be. We
found a related data-race in [17], which reuses code from [34].

Our tool, Faial, successfully identifies the program state that triggers the
data-race in Listing 2.1: when r=1 and N=2. However, state-of-the-art tools strug-
gle to accurately analyze Listing 2.1, as evaluated in Section 6 (Claim 1: Test 1).
Symbolic execution tools, such as [26,27], timeout for N>1, and, in general, can-
not handle symbolic (unknown) bounds. GPUVerify [6], a tool based on Hoare
logic, reports a false alarm: a spurious data-race when r=0 and N=1. PUG [24]
incorrectly identifies the example as DRF, as its analysis appears to ignore data-
races originating from different iterations of a loop.

2.2 Memory Access Protocols by Example

We now investigate the data-race in Listing 2.1 with an access memory proto-
col. For presentation purposes, we focus our discussion on Listing 2.1 (r.h.s.),
that simplifies the l.h.s. whilst retaining the root cause of its data-race, which
stems from the interaction between both loops. We discuss how we support
multi-dimensional arrays, multi-dimensional thread identifiers, and arbitrary
loop strides in Section 5. In our Coq formalism the notion of “accesses” (and
their dimensions) is a parameter of the theory, thus orthogonal to the theory
presented here.

Consider the execution of the end of the first iteration (r=0) and the beginning
of the second (r=1) iteration of the outer-loop. In this case, the execution of the
j-loop when r=0 is not synchronized with the execution of the i-loop when r=1 as
there is no call to __syncthreads() in between.

The access memory protocol in Listing 2.2 captures this partial execution
from the viewpoint of array tile. By design access memory protocols over ap-
proximate kernels by abstracting away what data is being written to/read from
an array, to focus on where data is being written. The protocol models the two
problematic loops of Listing 2.1, i.e., the j-loop when r=0 and the i-loop when r=1.
The first loop reads (rd[tid+j]) from the array, while the second writes (wr[tid])
to it. Evaluation of a protocol follows the SIMT model: each thread evaluates
wr[tid] by instantiating tid with their unique identifier (hereafter, an integer),
e.g., thread 0 yields wr[0] and thread 1 yields wr[1].

Analysis of Unsynchronized Protocols We say that a protocol is DRF when
all concurrent accesses are pair-wise DRF, i.e., when issued by different threads
on the same index, then neither access is a write. For instance the respective
sets of concurrent accesses of threads 0 and 1 in Listing 2.2 is given below

tid = 0
{rd[j] | 0 ≤ j < M} ∪ {wr[0]} DRF with?

tid = 1
{rd[1+j] | 0 ≤ j < M} ∪ {wr[1]}

Checking Data-Race Freedom of GPU Kernels, Compositionally 5

Listing 2.2: Minimal representative example of an access memory protocol high-
lighting the data-race in Listing 2.1.

1 // r = 0
2 forU j in 0..M // for (int j = 0; j<M; j++)
3 {rd[tid+j]}; // _ = tile [tid+ i];
4 // r = 1
5 forU i in 0..M // for (int i = 0; i<M; i++)
6 {wr[tid]} // tile [tid] = _;

When M>1, thread 0 (l.h.s) accesses rd[1] and thread 1 (r.h.s) accesses wr[1].
Thus, there is a data-race on index 1 of the array.

A fundamental challenge of static DRF verification is how to handle loops.
Symbolic execution approaches that unroll loops, e.g., [26, 27], cannot handle
large nor symbolic iteration spaces. Static approaches that use Hoare logic,
e.g., [5, 7, 22], require user-provided loop invariants. Another approach is to re-
duce loops to verifying the satisfiability of a corresponding universally quantified
formula, e.g., [25,30]. This has the advantage of being fast and not requiring in-
variants. However, its previous application to GPU programming, i.e., PUG,
is unsound due to the interaction between barrier synchronizations and loops,
e.g., PUG misses the data-race in Listing 2.1. We give more details in Section 6.
Our approach A key contribution of our work is to identify conditions that allow
a kernel to be reduced to a first-order logic formula, by precisely characterizing
the effect of barrier synchronization in loops. To this end, the language of access
memory protocols distinguishes syntactically between protocol fragments that
synchronize from those that do not. For instance, the protocol in Listing 2.2 is
identified as unsynchronized, as it does not include any synchronization.

In Section 4, we show that the DRF analysis of unsynchronized protocols can
be precisely reduced to a first-order logic formula, where universally quantified
formulae represent loops, thus obviating the need to unroll them explicitly. For
instance, we reduce the verification of Listing 2.2 to asking whether for all M ,
t1, and t2, where t1 6= t2 are thread identifiers, the following holds:

∀j1, i1, j2, i2 : 0 ≤ j1 < M ∧ 0 ≤ i1 < M ∧ 0 ≤ j2 < M ∧ 0 ≤ i2 < M =⇒
{rd[t1 + j1]} ∪ {wr[t1]} DRF with? {rd[t2 + j2]} ∪ {wr[t2]}

This formula is unprovable since rd[t1 + j1] races with wr[t2] when, e.g., t1 = 0,
t2 = 1, j1 = 1, and M > 1. Hence, our technique flags Listing 2.2 as racy.

Analysis of Synchronized Protocols The protocol in Listing 2.3 (left) mod-
els all the interactions over the shared array tile from Listing 2.1. This protocol
consists of one outer loop r that contains two inner loops separated by a barrier
synchronization (sync). The first inner loop writes (wr[tid]) to the array, while
the second reads (rd[tid+ j]) from the array.

This protocol illustrates how our language syntactically differentiates be-
tween protocols fragments that synchronize from those that do not. Concretely,

6 T. Cogumbreiro et al.

Listing 2.3: Access memory protocol (left) of array tile from Listing 2.1 and its
aligned version (right).

1 forS r in 0..N {
2 forU i in 0..M { wr[tid] }
3 sync;
4 forU j in 0..M { rd[tid + j] }
5 }

aligns to

1 forU i in 0..M { wr[tid] }
2 sync;
3 forS r in 1..N {
4 forU j in 0..M { rd[tid + j] }
5 forU i in 0..M { wr[tid] }
6 sync; }
7 forU j in 0..M { rd[tid + j] }

our language precludes an unsynchronized loop (forU x ∈ n..m {u}) from calling
sync anywhere in u, and it requires that a synchronized loop (forS x ∈ n..m {p})
includes at least one occurrence of sync. The superscript U (resp. S) stands for
synchronized (resp. unsynchronized). This distinction can be inferred automat-
ically and yields a compositional analysis, as we explain below.

The behavior of synchronized loops is difficult to analyse because they may
contain data-races that span more than one iteration. For instance an instruction
of iteration r in Listing 2.3 may race with an instruction of iteration r+1.
Our approach In this work we show that the DRF analysis of synchronized
protocols can safely be reduced to a first-order logic formula when such loops
are aligned, i.e., when there is at least one synchronization exactly before the
loop and one at the end of its body. In Section 4.1 we show how to transform
an arbitrary access memory protocol into an aligned protocol using a syntax-
driven transformation technique called barrier aligning. Intuitively, barrier align-
ing normalizes loops so that they do not “leak” accesses between iterations. The
right-hand side of Listing 2.3 shows the result of applying barrier aligning on the
protocol from Listing 2.3 (left). Observe that the fragment before the aligned
loop (line 1) corresponds to the unsynchronized part of the original loop (before
sync). The original loop itself is rearranged so that the part succeeding sync is
moved to the beginning of the aligned loop (lines 3–6). The fragment following
the aligned loop (line 7) corresponds to the unsynchronized loop that appears
after the sync in the original protocol.

In Section 4.1 we show that aligned protocols enable compositional verifica-
tion: protocol fragments between two barriers can be analyzed independently.
This compositional analysis is possible because (i) there is no causality between
instructions, except through sync and (ii) aligned protocols syntactically delimit
the causality induced by sync. For instance, the aligned protocol in Listing 2.3 can
be reduced to analyzing the following three protocol fragments independently:

forU i ∈ 0..M {wr[tid]} forU j ∈ 0..M {rd[tid+ j]}
forS r ∈ 1..N {forU j ∈ 0..M {rd[tid+ j]}; forU i ∈ 0..M {wr[tid]}; sync}

The first two protocols are handled like Listing 2.2 because they are unsynchro-
nized. Representing a synchronized loop as a formula becomes possible when
the protocol is aligned : both threads must share the same value for r at each

Checking Data-Race Freedom of GPU Kernels, Compositionally 7

iteration. Hence, we reduce the verification to asking whether for all N , M , t1,
and t2 where t1 6= t2 and the following holds:

∀r, j1, i1, j2, i2 : 1 ≤ r<N ∧ 0 ≤ j1<M ∧ 0 ≤ i1<M ∧ 0 ≤ j2<M ∧ 0 ≤ i2<M
=⇒ {rd[t1 + j1]} ∪ {wr[t1]} DRF with? {rd[t2 + j2]} ∪ {wr[t2]}

Our technique identifies Listing 2.3 as racy since this formula is unprovable, i.e.,
rd[t1+j1] races with wr[t2] when r = 1, t1 = 0, t2 = 1, j1 = 1, N > 1 andM > 1.

3 Access Memory Protocols

An access memory protocol describes the interaction between a group of threads
and a single shared-memory location. A protocol records where in memory ac-
cesses take place, but abstracts away from what data is read from/written to
memory. The language of protocols distinguishes between an unsynchronized
protocol fragment u ∈ U , that disallows synchronization, from a synchronized
fragment p ∈ S that must include a synchronization. The syntax and semantics
of access memory protocols is given in Figure 2. Our operational semantics is in-
spired by the synchronous, delayed semantics (SDV) from Betts et al. [6], where
threads execute independently and communicate upon reaching a barrier.

Hereafter, i, j, k are metavariables over non-negative integers picked from the
set N. An arithmetic expression n is either: an integer variable x, an integer i,
or a binary operation on integers that yields an integer. A boolean expression b
is either a boolean literal, an arithmetic comparison �, or a propositional logic
connective ◦. We write n ↓ i when expression n evaluates to integer i, where
evaluation is defined in the natural way. We overload the notation for Boolean
expressions, e.g., b ↓ true means that expression b evaluates to true.
Unsynchronized fragment A protocol u ∈ U either does nothing (skip), accesses
a shared memory location o[i] (reads from/writes to index i), performs sequential
composition, or loops. Figure 2 gives the semantics of unsynchronized protocols,
which is parameterized by a set of thread identifiers T ⊆ N, where |T | ≥ 2.

Evaluation of an unsynchronized protocol u by a thread identifier i, written
u ↓i P , yields a phase, i.e., a set P ∈ P of access values α ∈ A. Each access
value, or just access, notation i:o[j], consists of its issuing thread identifier i,
an access mode o (read/write), and an index j. Protocol skip produces no ac-
cesses. A memory access o[n] evaluates the index and creates a singleton phase.
Sequencing and looping are standard. Loop ranges include the lower bound and
exclude the upper bound. Similarly to SDV, Rule U-par executes a copy of the
unsynchronized code u for each thread i ∈ T by replacing the special variable
tid by the thread identifier, u[tid := i], which results in the union of the accesses
of all threads. To simplify the presentation we omit the unsynchronized condi-
tionals, however they are included in our Coq formalism and are fully supported
by Faial, see Section 5.
Synchronized fragment A protocol p ∈ S may perform barrier synchroniza-
tion sync, run unsynchronized code u, perform sequential composition, and loop.

8 T. Cogumbreiro et al.

Syntax

N 3 i ::= 0 | 1 | · · ·
n ::= x | i | n ?n

B 3 b ::= true | false | n �n | b ◦ b
U 3 u ::= skip | o[n] | u ;u | forU x ∈ n..m {u}
S 3 p ::= sync | u | p ; p | forS x ∈ n..m {p}

o ::= wr | rd
A 3 α ::= i:o[i]
P 3 P ::= {α1, . . . , αn}

H ::= [] | P : :H

Big-step semantics for U u ↓i P u ↓T S

U-skip

skip ↓i ∅

U-acc
n ↓ j

o[n] ↓i{i:o[j]}

U-seq
u1 ↓i P1 u2 ↓i P2

u1 ;u2 ↓i P1 ∪ P2

U-for-1
(n ≥ m) ↓ true

forU x ∈ n..m {u} ↓i ∅

U-for-2
(n < m) ↓ true u[x := n] ↓i P1 forU x ∈ n+ 1..m {u} ↓i P2

forU x ∈ n..m {u} ↓i P1 ∪ P2

U-par
S =

⋃
{u[tid := i] ↓i Pi | i ∈ T }

u ↓T S

History concatenation and merging H ·H H �H

[P1 . . . Pn] · [Pn+1 . . . Pn+k] = [P1 . . . Pn+k] (H · [P])� ([P ′] ·H ′) = H · [P ∪ P ′] ·H ′

Big-step semantics for S p ↓H

S-sync

sync ↓ [∅, ∅]

S-par
u ↓T P
u ↓ [P]

S-seq
p ↓H q ↓H ′

p ; q ↓H �H ′

S-for-1
(n ≥ m) ↓ true

forS x ∈ n..m {p} ↓[∅]

S-for-2
(n < m) ↓ true p[x := n] ↓H forS x ∈ n+ 1..m {p} ↓H ′

forS x ∈ n..m {p} ↓H �H ′

Structurally well-formed protocols swf (p)

swf (u ; sync)
swf (p) swf (q)

swf (p ; q)

swf (p) tid /∈ fv(n) ∪ fv(m)

swf (u1 ; for
S x ∈ n..m {p ;u2})

Data-race, safe phase, and safe history α# β safe(P) safe(H)

wr ∈ {o, o′} i 6= j

i:o[k] # j:o′[k]

∀α, β ∈ P : ¬(α# β)

safe(P)

∀P ∈ H : safe(P)

safe(H)

Fig. 2: Syntax, semantics, and properties of access memory protocols.

Checking Data-Race Freedom of GPU Kernels, Compositionally 9

Figure 2 gives the semantics of a protocol, notation p ↓H. Evaluation of a pro-
tocol p yields a history (ranged over by H), i.e., a list of phases (P) that records
how memory was accessed. We use : : as list constructor and · for the usual list
concatenation operator. Histories are merged using the special �-operator.

A barrier synchronization creates two empty phases, corresponding to phases
before and after synchronization. Running an unsynchronized protocol yields a
single phase containing all accesses performed by that protocol. Sequencing two
synchronized protocols p with q merges the last phase of the former with the
first phase of the latter, as these two phases run concurrently. The base case of
a synchronized loop produces a singleton history containing the empty phase.
Running one iteration of a synchronized loop sequences the history of the first
iteration with the rest of the loop, by merging the two histories.

Next, we introduce the notion of well-formed protocols, a restriction of struc-
turally well-formed protocols, see swf (p) in Figure 2. We discuss how well-
formedness is enforced in Section 5. We write fv(p) (resp. fv(n)) for the free
variables of p (resp. n).

Definition 1 (Well-formed protocol, p ∈ W). We say that a protocol is
well-formed, notation p ∈ W, when swf (p), fv(p) ⊆ {tid}, and every synchro-
nized loop executes at least one iteration.

DRF is formalized at the bottom of Figure 2. Two accesses are in a data-race
(or racy) when there exist two different threads that access the same index k,
and one of these accesses is a write. Our definition does not distinguish between
harmful and benign data races, a data-race in which both threads write the same
value. Phase P is safe iff each pair of accesses it contains is not racy. History P is
safe when all of its phases are safe. We say that p is DRF iff p ↓H and safe(H).

4 DRF-Preserving Transformations of Protocols

This section presents the main steps of the DRF analysis summarized in Figure 1:
barrier aligning (Section 4.1) and splitting (Section 4.2).

This section also includes our key theoretical results. We establish that these
steps preserve and reflect data-races (i.e., any and all data-races are found), see
Theorem 1 and Theorem 3. We make precise the notion of compositionality that
makes our approach scalable in Theorem 2.

4.1 Aligning Protocols

The first transformation step normalizes protocols by aligning synchronized
loops, which in turn enables a form of compositional verification. The goal of the
transformation is to produce protocols which belong to A, see top of Figure 3.

Barrier aligning (or just aligning) is performed by function align, given in
the bottom half of Figure 3. The function returns a pair whose first element is an
aligned and synchronized protocol, and whose second element is an unsynchro-
nized protocol. Intuitively, the pair represents a sequence which we delimitate

10 T. Cogumbreiro et al.

Aligned protocols p ∈ A

u ; sync ∈ A
p ∈ A q ∈ A

p ; q ∈ A
p ∈ A q ∈ A

p ; forS x ∈ n..m {q} ∈ A

Sequencing aligned protocols o
9 : U → A → A o

9 : (A× U)→ (A× U)→ A× U

u o
9 (u

′ ; sync) = (u ;u′) ; sync u o
9 (p ; q) = (u o

9 p) ; q (p, u) o
9 (q, u

′) = (p ;(u o
9 q), u

′)

Aligning protocols align : W → A× U

align(u ; sync) = (u ; sync, skip) align(p ; q) = align(p) o
9 align(q)

align(p) = (q, u3) q1 = u1
o
9 q[x := n] u = u3 ;u2

align(u1 ; for
S x ∈ n..m {p ;u2}) = (q1 ; for

S x ∈ n+1..m {u[x := x−1] o
9 q}, u[x := m−1])

Fig. 3: Aligning protocols.

syntactically. We note that the output of align, say (q, u), can be trivially made
into an aligned protocol: q ;u ; sync. The case for synchronization is simple, align
returns the input protocol as the first component of the pair and skip as the
second component (the input protocol is already fully aligned). The case for
sequence consists of the sequential composition of the pair aligned with unsyn-
chronized code using operator (o9). Sequencing two pairs (p, u) o

9 (q, u
′) amounts

to sequencing u to the outer-most piece of unsynchronized code present in q.
Dealing with synchronized loops is more involved. Given a loop u1 ; forS x ∈

n..m {p ;u2}, we produce a protocol consisting of the fragment preceding the
loop and the synchronized part of its first iteration (q1), an aligned loop starting
at n+1, and the unsynchronized part of its last iteration (u[x := m−1]). See
Listing 2.3 for an example of protocol aligning. We note that we can always unroll
the loop because the analysis only considers non-empty synchronized loops; we
discuss how to enforce this assumption in Section 5.

We now state two fundamental properties of barrier aligning: preserving and
reflecting DRF (Theorem 1), and enabling compositional verification (Theo-
rem 2). Theorem 1 states that verifying DRF of a well-formed protocol p is
equivalent to verifying DRF of its aligned counterpart.

Theorem 1 (Correctness of Align). If p ∈ W and align(p) = (q, u), then
p is DRF if and only if q ;u is DRF.

To state our compositionality result, we introduce a language of contexts:

C ::= [_] | u ; sync | p ; C | C ; p | C ; forS x ∈ n..m {p} | p ; forS x ∈ n..m {C}

The base cases correspond to a hole [_] or an unsynchronized protocol (followed
by sync). The other cases follow the structure of access memory protocols.

Checking Data-Race Freedom of GPU Kernels, Compositionally 11

Syntax

L 3 h ::= skip | n:o[m] | h ;h | var x in n..m;h

Product of histories H ⊗H

H1⊗H2 = [P1 ∪ P2 | (P1, P2) ∈ H1 ×H2]

Big-step semantics h ⇓ H

skip ⇓ [∅]
n ↓ i m ↓ j

n:o[m] ⇓ [{i:o[j]}]
h1 ⇓ H1 h2 ⇓ H2

h1 ;h2 ⇓ H1⊗H2

(n ≥ m) ↓ true
var x in n..m;h ⇓ [∅]

(n < m) ↓ true h[x := n] ⇓ H1 var x in n+ 1..m;h ⇓ H2

var x in n..m;h ⇓ H1 ·H2

Projection trace : U → L

trace(o[n]) = tid:o[n] trace(forU x ∈ n..m {u}) = var x in n..m; trace(u)

trace(u1 ;u2) = trace(u1) ; trace(u2) trace(skip) = skip

Splitting protocols split : A → [L]

split(p ; q) = split(p) · split(q)

t1, t2 fresh h1 = trace(u)[tid := t1] h2 = trace(u)[tid := t2]

split(u ; sync) = [var t1 in 1..|T |; var t2 in 0..t1;h1 ;h2]

split(p ; forS x ∈ n..m {q}) = split(p) · [var x in n..m;h | h ∈ split(q)]

Fig. 4: Syntax and semantics of symbolic traces, and splitting of protocols.

Theorem 2 (Compositionality). Let C be a context, s.t. C[skip ; sync] is
DRF. For all p ∈ A, if p is DRF, fv(p) ⊆ {tid}, then C[p] ∈ A and C[p] is
also DRF.

Compositionality allows Faial to analyze each fragment of an aligned protocol
independently, by splitting the given protocol into multiple symbolic traces.

4.2 Splitting Protocols into Symbolic Traces

The second verification step, splitting, consists in transforming an aligned proto-
col into symbolic traces, i.e., symbolic representations of sets of memory accesses
which occur between two synchronizations.
Symbolic traces Intuitively, symbolic traces are a thin abstraction over an SMT
formula. We describe how to translate a symbolic trace to a formula in Section 5.

12 T. Cogumbreiro et al.

We give the syntax and semantics of symbolic traces in Figure 4. Expres-
sion skip terminates a trace. Expression n:o[m] states that thread n accesses
index m with mode o. Expression h1 ;h2 composes two symbolic traces using
operator ⊗, also given in Figure 4. Expression var x in n..m;h binds variable x
in h, where variable x is an integer in the range induced from n and m. The
semantics of a symbolic trace yields a history with a phase for each possible vari-
able assignment. Expression skip yields a single empty phase. Expression n:o[m]
evaluates to a singleton set that contains the access value that results from eval-
uating the thread-identifier expression n and the index expressionm. Sequencing
histories h1 ;h1 consists of performing the product of phases (operator ⊗), which
consists of merging every phase of H1 with every phase of H2. A variable binder
behaves like a skip when the range of values is empty. Otherwise, we fork two his-
tories H1 and H2. We assign the lower bound of the set in H1, and we recursively
evaluate a variable binder where we increment its lower bound in H2.
Barrier splitting is the transformation from aligned protocols to symbolic traces,
performed via functions trace and split , defined in Figure 4. Function trace
extracts the symbolic trace of an unsynchronized program for a single thread.
Memory accesses are tagged with the owner thread tid, and unsynchronized loops
are converted into variable bindings. Function split returns a list of symbolic
traces. The case for p ; q is trivial (operator · stands for list concatenation). The
base case of split is for unsynchronized protocol fragment u, which produces a
list containing a single symbolic trace. It introduces fresh variables t1 and t2
that represent two (distinct) symbolic thread identifiers. The rest of the trace
consists of the trace of u instantiated to the first thread identifier t1 followed
by its instantiation to the second thread identifier t2. The case for synchronized
loops simply reinterprets the loop as a variable binder. Function split leads to an
exponential blow up wrt. nesting of synchronized loops, but this has not posed
problems in practice, c.f., Claim 2.

Example 1. Let p̂ = wr[tid+ 1]; rd[tid+ 2]; sync. We have that split(p̂) returns:

var t1 in 1..|T |; var t2 in 0..t1; t1:wr[t1+1]; t1:rd[t1+2]; t2:wr[t2+1]; t2:rd[t2+2]

We show that barrier splitting preserves and reflects DRF.
Theorem 3. Let p ∈ A, such that p ↓H1, and H2 = [H | h ∈ split(p)∧h ⇓ H],
then safe(H1) if and only if safe(H2).

Hence we have established that aligning (Theorem 1) and splitting (Theo-
rem 3) preserve and reflect data-races, i.e., any and all data-races are found.
Thus, the only source of approximation in our analysis stems from the inference
of protocols from CUDA kernels, which we discuss in the next section. Theorem 3
highlights the compositionality of our analysis, as each symbolic trace resulting
from function split can be analyzed independently.

5 Implementation

In this section we present our tool, Faial, that implements the steps described
in Figure 1. Faial takes a CUDA kernel as input and produces results that ei-

Checking Data-Race Freedom of GPU Kernels, Compositionally 13

ther identify the kernel as DRF or list specific data-races. In this section, we
describe the implementation of the protocol inference, well-formedness checks,
and transformation to SMT.
Inference This step transforms a CUDA kernel into access memory protocols
(one for each shared array). It uses libclang [23] to parse the kernel, a standard
single static assignment (SSA) transformation to simplify the analysis of indices
and arrays, and code slicing to only retain code related to shared array accesses.
We note that Faial supports constructs of the CUDA programming model that
are not directly modeled by access memory protocols, e.g., unstructured loops,
conditionals, function calls, and multi-dimensional arrays. To support multi-
dimensional thread identifiers, we extend the language of protocols to support
multiple thread identifiers, and adapt function split accordingly. The main chal-
lenges are related to loops and function calls.

Whenever possible loops are transformed to loops with a stride of 1 follow-
ing ideas from loop normalization [24] and abstraction [30]. For instance, in
for(int i=lb;i<ub;i+=s){S} we change the stride from s into 1 by executing the
loop body S when the loop variable i is divisible by stride, i.e., the loop becomes
for(int i=lb;i<ub;i++) if((i+lb)%s==0){S}. Similarly, a loop ranging over powers
of n, e.g., for(int i=lb;i<ub;i*=s), becomes for(int i=lb;i<ub;i++) if(powerof(i,s)){S},
where function powerof(i,s) tests whether i is a power of base s. We approximate
whiles as a structured loop with an unknown upper bound.

Function calls that manipulate shared memory are uncommon in GPU pro-
gramming. Additionally auxiliary functions that manipulate shared memory
have a compiler annotation to inline their bodies, hence we can inline such calls
easily. Faial cannot handle recursive functions, but these rarely occur in practice.
Function calls that do not access shared memory are simply discarded.
Well-formedness This step ensures that kernels Faial analyzes meet the well-
formedness conditions, i.e., p ∈ W, including the assumptions that synchronized
loops iterate at least once, see Definition 1. First, Faial annotates loops with a
synchronized/unsynchronized tag according to the presence of sync in the loop
body, then adjusts the precedence of sequencing to group all unsynchronized code
preceding a sync or a synchronized loops. Synchronized loops of well-formed pro-
tocols cannot manipulate thread-local variables (i.e., tid), an assumption shared
by the CUDA programming model. Hence, Faial flags such kernels as erroneous.
Next, Faial adds assertions before/after synchronized loops to check that the
loop range is non-empty, i.e., loops execute at least once. Similarly to loops,
conditionals are tagged as synchronized or unsynchronized. Then, Faial inlines
synchronized conditionals, i.e., when a synchronized conditional is found, two
copies of the input program are created and each copy is prefixed by a global
assertion corresponding to the condition. Faial does not support synchronized
conditionals that appear within synchronized loops. We have not found real-
world kernels that include such a construction.
Quantification This step transforms each symbolic trace (Figure 4) into an SMT
formula, to check for safety, c.f., Figure 2. The presented formalism assumes a
decidable fragment. However, as CUDA programs may include multiplication

14 T. Cogumbreiro et al.

in index expressions, Faial uses an undecidable logic (SMTLib’s QF_LIA). Es-
sentially, the generated formula guarantees that the indices of array accesses
are distinct when there is at least one write. We illustrate this straightforward
transformation with Example 2.

Example 2. The formula generated from the trace in Example 1 is given below:

∀t1, t2 : 1 ≤ t1 < |T | ∧ 0 ≤ t2 < t1 ∧ (m1 = wr ∨m2 = wr) =⇒(
(idx1 = t1 + 1 ∧m1 = wr) ∨ (idx1 = t1 + 2 ∧m1 = rd)

)
∧
(
(idx2 = t2 + 1 ∧m2 = wr) ∨ (idx2 = t2 + 2 ∧m2 = rd)

)
∧ idx1 6= idx2

where each symbolic access is translated to a conjunction representing its index
(idx) and access mode (m). Observe that the formula enforces that indices idx1
and idx2 (executed by distinct threads) are different.

For multi-dimensional arrays, we generate one pair of indices per dimension, and
check that at least one pair is distinct.

6 Experimental Evaluation

We evaluate Faial over several datasets and show how it fares against existing
approaches. We structure this evaluation in three claims.

Claim 1: Correctness. We claim that our approach finds more bugs and raises
fewer false alarms than existing tools. To evaluate this claim, we compare Faial
against four state-of-the-art kernel verification tools over 10 kernels that are
known to be tricky to analyze.
Claim 2: Scalability. We claim that our approach scales better to larger pro-
grams. To evaluate this claim, we compare Faial against other tools over a set
of synthetic benchmarks designed to test the limits of each tool, in terms of run
time and memory usage.
Claim 3: Real-world usability. We claim that our approach is more usable
than existing static verification tools on real-world CUDA programs. To evaluate
this claim, we use a varied dataset of real-world DRF kernels and measure the
false alarm rate, run time, and memory usage of Faial, GPUVerify, and PUG.

Benchmarking environment To make our evaluation reproducible, we developed
a benchmarking framework to automate our experiments over the different tools
and datasets. For Claim 1 and Claim 3, we designed a tool-agnostic file format for
kernel functions and associated metadata (e.g., expected result of DRF analysis,
grid and block dimensions, and include directives). And for Claim 2, we created
a tool that generates kernels according to given templates, e.g., see Figure 7.

We evaluate Faial against the following verification tools: GPUVerify [5] v2018-
03-22; PUG [24] v0.2; and, GKLEE [26] and SESA [27] v3.0. Experiments for
Claim 1 use an Intel i5-6500 CPU, 7.7GiB RAM, and Fedora 33 OS, while
Claim 2 and Claim 3 use an Intel i7-10510U CPU, 16GiB RAM, and Pop! OS.

Checking Data-Race Freedom of GPU Kernels, Compositionally 15

Table 1: Results for Claim 1. DRF indicates that a (static analysis) tool reported
a test case as DRF. NRR indicates that a (symbolic execution) tool did not
report any data-race. Label x/y indicates that the tool reported y data-races, x
of which are actual races. Label timeout indicates that the tool did not terminate
within 90s. A test passes if the tool returns the expected result and all reported
races are valid.
Test Expected Faial GPUVerify PUG GKLEE SESA

1 transposeDiagonal Racy 1/1 0/2 DRF timeout timeout
DRF DRF 0/1 DRF timeout timeout

2 first-iter Racy 1/1 0/1 1/1 timeout timeout
DRF DRF 0/1 0/1 timeout timeout

3 last-iter Racy 1/1 1/1 0/1 timeout timeout
DRF DRF 0/1 DRF timeout timeout

4 last-iter-first-iter Racy 1/1 0/1 0/1 timeout timeout
DRF DRF 0/1 0/1 timeout timeout

5 read-index Racy 0/1 1/1 0/1 NRR NRR
DRF 0/1 DRF 0/1 NRR NRR

Number of tests passed (of 5): 4 1 0 0 0

Excluded tools We excluded ESBMC-GPU [33] and Simulee [37] from the evalu-
ation because we were unable to get them to run satisfactorily. Both tools have
rudimentary support for verifying arbitrary CUDA kernels. ESBMC-GPU did not
find a single data-race in our benchmarks, while Simulee produced false alarms
for every DRF-kernel given.

Claim 1: Correctness

We have selected a set of tricky kernels to expose false alarms and missed data-
races in Faial, GPUVerify, PUG, GKLEE, and SESA. Our results are reported
in Table 1. The dataset consists of 5 tests, each consisting of two variations
of the same kernel: one racy and one DRF. The racy version of Test 1 (c.f.,
Listing 2.1) contains an inter-iteration data-races. The DRF version adds a sync
after the second inner loop. Tests 2 to 4 expose various loop-related data-races.
Their protocols are given in Figure 5. In the racy version of Test 2 wr[tid+ 1]
conflicts with wr[tid] of the first iteration. Similarly, in the racy version of Test 3,
wr[tid+ 1] of the last iteration races with wr[tid]. In the racy version of Test 4 the
last iteration of a nested loop races with the first iteration of the following loop.
Test 5 exposes the abstraction gap between kernel and access memory protocols
(which abstract away array elements), see Figure 6.

Faial passes more tests than any other tool. Failed Test 5 is caused by access
memory protocols abstracting away from what data is being read from/written
to arrays, i.e., array elements. In each case, Faial reports one spurious data
race (0/1). We report on performance trade-offs wrt. tracking array elements in
Claim 2.

GPUVerify passes Test 5 because it tracks array elements, but fails the re-
maining 4 tests. Some reported false alarms are ill-formed, e.g., on the racy
component of Test 2, the report (0 : wr[tid]; 16 : wr[tid]) has disjoint indices.

16 T. Cogumbreiro et al.

// first-iter
wr[tid+1];
forS x in 0..N {

if (x > 0)

{ wr[tid] } ;

sync}

// last-iter
forS x in 0..N {

sync;

if (tid < |T|-1)

{ wr[tid+1] } };

wr[tid + |T|]

// last-iter-first-iter
forS x in 1..N+1 {

forS y in 1..x+1 {
sync; wr[tid+x+y]}};

forS z in N*2..N*3 {

wr[tid+z +1]; sync}

Fig. 5: Protocols for Tests 2 to 4, c.f., Claim 1, where N is a free thread-global
variable. Yellow shaded code only appears in the DRF version of first-iter and
last-iter. Red shaded code only appears in the racy version of last-iter-first-iter.

// Racy kernel
A[tid] = tid ;
int x = A[tid];
A[x+1] = 0;

// Protocol A
wr[tid];
rd [tid];
wr[x+1]

// DRF kernel
A[tid] = tid ;
int x = A[tid];
A[x] = 0;

// Protocol A
wr[tid];
rd [tid];
wr[x]

Fig. 6: Kernels and protocols for Test 5 (read-index), c.f., Claim 1; x becomes a
free thread-local variable as protocols do not model array elements.

PUG obtains the worst score amongst static tools. Notably, the tool misses a
data-race in Test 1, demonstrating its unsoundness, c.f., Section 2.1.

GKLEE and SESA timeout for tests that include loops, as the loop bounds
are unknown. Both tools miss the data-race in Test 5. Symbolic tools may be
able to report data-races when the bound is known, e.g., timeouts start in Test 1
when the bound is at least 2, in Test 2 when the bound is at least 23, 000.

Claim 2: Scalability

We evaluate the scalability of our approach with a synthetic dataset that aims
at demonstrating how different kernel constructs affect run time and memory
usage of Faial, GKLEE, GPUVerify, PUG, and SESA. Our dataset is divided into
five categories, one per syntactical construct in the language of access mem-
ory protocols, as well as conditionals, which are supported by our inference step,
c.f., Section 5. Figure 7 shows the protocols of the kernel patterns we generate in
each category: (i) repeated accesses (read then write), (ii) repeated barrier syn-
chronizations separated by writes, (iii) repeated conditionals, (iv) increasingly
nested unsynchronized loops, and (v) increasingly nested synchronized loops. In
each category, we vary the problem size by repeating a pattern from 1 to 50
times. Note that all kernels generated this way are DRF.

Figure 8 shows the average run time and memory usage over five runs on
logarithmic and linear scales, respectively. For each run, we set a timeout of 90s
and we exclude any run that times out or reports a false alarm. Cutoffs in the
memory plots are determined by the cutoffs in the run time plots.

Overall Faial is the most scalable tool. In 4 out of 5 categories, Faial has
the slowest growth for all experiments, and verifies all tests within 0.46s. In the

Checking Data-Race Freedom of GPU Kernels, Compositionally 17

// accesses
rd [tid + n1*|T |];
wr[tid + 1*|T |];
rd [tid + n2*|T |];
wr[tid + 2*|T |];
// ...

// barriers
wr[tid];
sync;
wr[tid];
sync;
// ...

// conditionals
if tid==0
{wr[tid]};

if tid==1
{wr[tid]};

// ...

// unsynchronized loops
forU i1 in 0..N {

wr[tid];
forU i2 in 0..N {

wr[tid];
// ... }}

// synchronized loops
forS i1 in 0..N {

wr[tid]; sync;
forS i2 in 0..N {

wr[tid]; sync;
// ... }}

Fig. 7: Synthetic protocols generated for Claim 2. N is a free thread-global vari-
able, and n1, n2. . . are positive integer literals.

faial gpuverify pug sesa gklee

100

101 pug

accesses

10−1

100

barriers

10−1

100

101

conditionals

10−1

100

101

102

sesa

gklee

unsync-loops

1 8 15 22 29 36 43 50

10−1

100

101

102

sesa

gklee

sync-loops

T
im

e
(s

)

Problem size

40

45

50

55

60

pug

accesses

40

45

50

55

60

65

70
barriers

40

45

50

55

60conditionals

40

50

60

70

80
sesa

gklee

unsync-loops

1 8 15 22 29 36 43 50

50

100

150

200

250

sesa

gklee

sync-loops

M
em

ory
usage

(M
B

)

Problem size

Fig. 8: Results for Claim 2. Run time (left plots) are given on a logarithmic scale,
and memory (right plots) are given on a linear scale. Flatter and lower curve is
better. Tools annotated with a triangle are excluded due to timeouts or errors.

18 T. Cogumbreiro et al.

largest problem sizes, our tool is the fastest in 3 categories (access, conditional,
unsynchronized loop), 2nd for barriers, and 3rd for synchronized loops. Overall,
the memory usage of Faial is competitive with other tools. Faial is the only tool
with a near constant time/memory for up to 50 unsynchronized loops, indicating
the scalability of reducing unsynchronized loops to universally quantified formu-
las. Faial only times out for kernels which consists of >17 nested synchronized
loops. However such kernels are uncommon, e.g., the levels of nested synchro-
nized loops in the real-word kernels studied in Claim 3 are at most 3.

GPUVerify remains stable in the barrier and conditional categories but is af-
fected negatively by loops and accesses. Loops are a known bottleneck in GPUVer-
ify [2]. In the access category there is an exponential slowdown due to GPUVerify
keeping track of what data is being written to/read from array.

PUG tool remains stable with the number of barrier synchronizations but is
affected negatively by the number of conditionals and loops. PUG is the fastest
tool with smaller inputs, but it raises false alarms in the access category, hence
these measurements are omitted from the corresponding plots.

We discuss GKLEE and SESA together since SESA processes GKLEE’s NVCC
byte code output by concretizing variables, before passing it to GKLEE itself.
There are two main factors that affect negatively these symbolic execution tools:
(i) the number of loops, since they unroll each loop; and (ii) the amount of book-
keeping required to keep track of what is read from/written to memory. Figure 8
shows clear exponential curves for the access and barrier synchronization cate-
gories. Observe that these tools timeout immediately in the loop categories.

Claim 3: Real-World Usability

We evaluate the usability of our approach by comparing Faial with other static
verification tools (GPUVerify and PUG) on real-world kernels wrt. rate of false
alarm and run time. We curated a set of CUDA kernels from [2], which consists
of 3 benchmark suites (totaling 227 CUDA kernels): NVIDIA GPU Computing
SDK v2.0 (8 CUDA kernels); NVIDIA GPU Computing SDK v5.0 (166 CUDA
kernels); Microsoft C++ AMP Sample Projects (20 kernels); gpgpu-sim bench-
marks (33 kernels). All kernels are DRF and have been pre-processed by the
authors of [2] to facilitate verification. Each kernel is in a distinct file, all depen-
dencies are available, and kernels are annotated with minimal pre-conditions to
allow for automatic analysis (e.g., thread count is given).

As we aim to evaluate fully automatic verification of three tools, we removed
code annotations (pre-conditions and loop invariants) specific to GPUVerify. Ad-
ditionally, we made minor changes to some kernels to meet the limitations of
the front-end of Faial and PUG. For instance we converted nested array lookups
to use temporary variables and inlined functions calls that operate on arrays in
22 kernels. Another 8 kernels were modified to simplify their control flows. Our
curated dataset will be included in our artifact submission.

Figures 9a, 9b, and 9c give the correctness results of Faial, GPUVerify, and
PUG, respectively. Correct refers to the true-positive rate, i.e., when the tool
correctly identifies the kernel as DRF. False Alarm refers to the false alarm rate,

Checking Data-Race Freedom of GPU Kernels, Compositionally 19

Correct (C) False Alarm (F) Unsupported (U) Timeout (T)

C: 96.0% (218)

F: 4.0% (9)

U: 0.0% (0)

T: 0.0% (0)

(a) Faial

C: 67.4% (153)

F: 20.7% (47)

U: 0.4% (1)

T: 11.5% (26)

(b) GPUVerify

C: 34.8% (79)

F: 2.6% (6)

U: 62.6% (142)

T: 0.0% (0)

(c) PUG

faial gpuverify pug

Kernel id

0

100

101

T
im

e
(s

)

0 20 40 60 80 100 120 140 160 180 200 220

Kernel id

40

50

60

70

80

90

M
em

or
y

(M
B

)

(d) Run time (top) and memory usage (bottom) of true-positives. Time (resp. memory)
is cropped at 10s (resp. 100MB) and plotted on a logarithmic (resp. linear) scale.

Fig. 9: Results for Claim 3, on a set of 227 DRF CUDA kernels.

i.e., when the tool incorrectly identifies the kernel as racy. A kernel is Unsupported
if it makes the tool crash. A Timeout occurs when the tool exceeds the limit of
60s to verify a kernel. The values shown are an average calculated over five runs.
Figure 9d shows the average run time and memory usage of every true-positive
report (we omit invalid reports) across the three tools.

Overall Faial has the highest rate of true-positives at 96%. Our tool is second
in terms of run time and memory usage, showing a good compromise w.r.t. time
and space. Faial verifies most kernels within 1s, and all kernels that need more
time are only verified by Faial. GPUVerify shows lower memory usage at the
cost of a higher verification run time. PUG verifies the lowest number of kernels
(34.8%), as most kernels are unsupported (62.6%).

20 T. Cogumbreiro et al.

7 Related Work

SMT-based DRF analyses Li and Gopalakrishnan propose a direct encoding of
DRF analysis of GPU programs in SMT, with PUG [24,25]. Both PUG and Faial
follow a similar approach of barrier splitting: having a symbolic representation
of a canonical interleaving, and dividing up the analysis over barrier intervals.
The two major distinctions are that (1) PUG misses inter-thread data-races in
synchronized loops, e.g., Listing 2.1, and (2) the algorithms of PUG are unspeci-
fied and lack soundness proofs. In [24, §6.3] the authors identify the challenge of
detecting inter-thread data-races, but do not elaborate a solution. Ma et al. [30]
present a similar technique to detect data-races and deadlocks in OpenMP pro-
grams (CPU-based parallelism). However, their work does not guarantee DRF,
and they do not formalize their algorithms. In [8], Prasanth et al. propose a
polyhedral encoding of DRF for OpenMP programs, which is only applicable to
programs with affine array accesses. However the prevalence of linearized array
expressions in GPU kernels is known to stump polyhedral analysis [16].

Hoare-logic-based DRF analyses The main drawback of Hoare-logic based tools
is their high rate of false alarms. They also require code annotations from a
concurrency expert to handle loops. GPUVerify [2, 3, 5, 6, 12] can verify CUDA
and OpenCL kernels using Boogie [4] as a backend. GPUVerify also relies on a
two-thread abstraction (pen and paper proof) — in this paper, we present the
first machine-checked proof of the two-thread abstraction idea. VeriCUDA [20,21]
focuses on reasoning about the functional correctness of GPU programs using
Hoare-logic. In [22] the authors extend VeriCUDA to proving DRF. In a sim-
ilar vein, VerCors [7] uses separation logic to prove the functional correctness
and DRF of GPU kernels. Both VeriCUDA and VerCors expect a tool-specific
language, hence cannot handle real-world kernels directly.

Data-race finders include: dynamic data-race detection, symbolic-execution, and
model-checking. Such techniques are better suited for highly detailed analysis
in smaller kernels, and typically are unable to prove DRF. Dynamic data-race
detection executes a kernel to find data-races on a fixed input, e.g., [14, 18,
19, 28, 32, 38, 39]. This technique only reports real data-races, but suffers from
a slowdown of at least 10× compared to the non-instrumented program, and
requires the kernel input data, which might be unavailable or unknown. Symbolic
execution and model checking have been extended to detect data-races [10, 11,
26, 33, 37]. These techniques do without the kernel input data and can detect
more data-races than dynamic data-race detection.

Miscellaneous Ferrel et al. introduce a machine-checked formalism to reason
about the semantics of CUDA assembly [15]. Dabrowski et al. mechanize the
DRF-analysis of multithreaded programs [13]. Muller and Hoffmann present a
logic to reason about the evaluation cost of CUDA kernels [31].

Other behavioral types have been used to verify parallel and multithreaded
systems that communicate via message-passing [29,35,36]. However these do not
capture shared memory (only message-passing), thus cannot address data-races.

Checking Data-Race Freedom of GPU Kernels, Compositionally 21

8 Conclusion

We tackle the problem of statically checking DRF in GPU kernels, with a new
family of behavioral types, i.e., access memory protocols. We provide a novel
compositional analysis of access memory protocols, along with fully mechanized
proofs and an implementation. Our evaluation explores challenging and diverse
benchmarks (229 real-world and 258 synthetic kernels) to demonstrate that our
approach is more precise (false alarms and missed alarms), scalable (time/mem-
ory growth), and usable (real-world kernels correctly verified) than other tools.

Acknowledgements We thank Rumyana Neykova, Stephen Chang, and the
anonymous reviewers for their insightful feedback on earlier versions of this work.

References

1. Ancona, D., Bono, V., Bravetti, M., Campos, J., Castagna, G., Deniélou, P.M.,
Gay, S.J., Gesbert, N., Giachino, E., Hu, R., Johnsen, E.B., Martins, F., Mascardi,
V., Montesi, F., Neykova, R., Ng, N., Padovani, L., Vasconcelos, V.T., Yoshida,
N.: Behavioral types in programming languages. Foundations and Trends in Pro-
gramming Languages 3(2-3), 95–230 (2016). https://doi.org/10.1561/2500000031

2. Bardsley, E., Betts, A., Chong, N., Collingbourne, P., Deligiannis, P., Donaldson,
A.F., Ketema, J., Liew, D., Qadeer, S.: Engineering a static verification tool for
GPU kernels. In: Proceedings of CAV. vol. 8559, pp. 226–242. Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9_15

3. Bardsley, E., Donaldson, A.F., Wickerson, J.: KernelInterceptor: Automating GPU
kernel verification by intercepting kernels and their parameters. In: Proceedings of
IWOCL. pp. 1–5 (5 2014). https://doi.org/10.1145/2664666.2664673

4. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: Proceedings of FMCO.
p. 364–387. Springer (2005). https://doi.org/10.1007/11804192_17

5. Betts, A., Chong, N., Donaldson, A.F., Ketema, J., Qadeer, S., Thomson, P., Wick-
erson, J.: The design and implementation of a verification technique for GPU ker-
nels. Transactions on Programming Languages and Systems 37(3), 1–49 (2015).
https://doi.org/10.1145/2743017

6. Betts, A., Chong, N., Donaldson, A.F., Qadeer, S., Thomson, P.: GPUVerify: a
verifier for GPU kernels. In: Proceedings of OOPSLA. pp. 113–132. ACM (2012).
https://doi.org/10.1145/2384616.2384625

7. Blom, S., Huisman, M., Mihelčić, M.: Specification and verification of
GPGPU programs. Science of Computer Programming 95(P3), 376–388 (2014).
https://doi.org/10.1016/j.scico.2014.03.013

8. Chatarasi, P., Shirako, J., Kong, M., Sarkar, V.: An extended polyhedral model
for SPMD programs and its use in static data race detection. In: Proceedings of
LCPC’16. pp. 106–120. Springer (2017). https://doi.org/10.1007/978-3-319-52709-
3_10

9. Cogumbreiro, T., Lange, J., Liew Zhen Rong, D., Zicarelli, H.: Check-
ing Data-Race Freedom of GPU Kernels, Compositionally (Artifact) (2021).
https://doi.org/10.5281/zenodo.4726300

https://doi.org/10.1561/2500000031
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1145/2664666.2664673
https://doi.org/10.1007/11804192_17
https://doi.org/10.1145/2743017
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1016/j.scico.2014.03.013
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.5281/zenodo.4726300

22 T. Cogumbreiro et al.

10. Collingbourne, P., Cadar, C., Kelly, P.H.J.: Symbolic testing of OpenCL code. In:
Proceedings of HVC. pp. 203–218. Springer (2012). https://doi.org/10.1007/978-
3-642-34188-5_18

11. Collingbourne, P., Cadar, C., Kelly, P.H.: Symbolic crosschecking of floating-
point and SIMD code. In: Proceedings of EuroSys. pp. 315–328. ACM (2011).
https://doi.org/10.1145/1966445.1966475

12. Collingbourne, P., Donaldson, A.F., Ketema, J., Qadeer, S.: Interleaving and lock-
step semantics for analysis and verification of GPU kernels. In: Proceedings of
ESOP. pp. 270–289. Springer (2013). https://doi.org/10.1007/978-3-642-37036-
6_16

13. Dabrowski, F., Pichardie, D.: A certified data race analysis for a Java-
like language. In: Proceedings of TPHOL, pp. 212–227. Springer (2009).
https://doi.org/10.1007/978-3-642-03359-9_16

14. Eizenberg, A., Peng, Y., Pigli, T., Mansky, W., Devietti, J.: BARRACUDA:
Binary-level Analysis of Runtime RAces in CUDA programs. In: Proceedings of
PLDI. pp. 126–140. ACM (2017). https://doi.org/10.1145/3062341.3062342

15. Ferrell, B., Duan, J., Hamlen, K.W.: CUDA au Coq: A framework for machine-
validating GPU assembly programs. In: Proceedings of DATE. pp. 474–479 (2019).
https://doi.org/10.23919/DATE.2019.8715160

16. Grosser, T., Ramanujam, J., Pouchet, L.N., Sadayappan, P., Pop, S.: Optimistic
delinearization of parametrically sized arrays. In: Proceedings of ICS. pp. 351–360.
ACM (2015). https://doi.org/10.1145/2751205.2751248

17. ul Hassan Khan Khan, A., Al-Mouhamed, M., Fatayer, A., Almousa, A.,
Baqais, A., Assayony, M.: Padding free bank conflict resolution for CUDA-
based matrix transpose algorithm. In: Proceedings of SNPD. pp. 1–6 (2014).
https://doi.org/10.1109/SNPD.2014.6888709

18. Holey, A., Mekkat, V., Zhai, A.: HAccRG: Hardware-accelerated data
race detection in GPUs. In: Proceedings of ICPP. pp. 60–69 (2013).
https://doi.org/10.1109/ICPP.2013.15

19. Kamath, A.K., George, A.A., Basu, A.: ScoRD: A scoped race detec-
tor for GPUs. In: Proceedings of ISCA. pp. 1036–1049. IEEE (2020).
https://doi.org/10.1109/ISCA45697.2020.00088

20. Kojima, K., Igarashi, A.: A Hoare logic for SIMT programs. In: Proceedings of
APLAS. vol. 8301, pp. 58–73. Springer (2013). https://doi.org/10.1007/978-3-319-
03542-0_5

21. Kojima, K., Igarashi, A.: A Hoare logic for GPU kernels. Transactions on Compu-
tational Logic 18(1), 1–43 (2017). https://doi.org/10.1145/3001834

22. Kojima, K., Imanishi, A., Igarashi, A.: Automated verification of functional correct-
ness of race-free GPU programs. Journal of Automated Reasoning 60(3), 279–298
(2018). https://doi.org/10.1007/s10817-017-9428-2

23. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: Proceedings of CGO. pp. 75–88. IEEE (2004).
https://doi.org/10.1109/CGO.2004.1281665

24. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU
kernel functions. In: Proceedings of FSE. pp. 187–196. ACM (2010).
https://doi.org/10.1145/1882291.1882320

25. Li, G., Gopalakrishnan, G.: Parameterized verification of GPU ker-
nel programs. In: Proceedings of IPDPSW. pp. 2450–2459 (2012).
https://doi.org/10.1109/IPDPSW.2012.302

https://doi.org/10.1007/978-3-642-34188-5_18
https://doi.org/10.1007/978-3-642-34188-5_18
https://doi.org/10.1145/1966445.1966475
https://doi.org/10.1007/978-3-642-37036-6_16
https://doi.org/10.1007/978-3-642-37036-6_16
https://doi.org/10.1007/978-3-642-03359-9_16
https://doi.org/10.1145/3062341.3062342
https://doi.org/10.23919/DATE.2019.8715160
https://doi.org/10.1145/2751205.2751248
https://doi.org/10.1109/SNPD.2014.6888709
https://doi.org/10.1109/ICPP.2013.15
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1007/978-3-319-03542-0_5
https://doi.org/10.1007/978-3-319-03542-0_5
https://doi.org/10.1145/3001834
https://doi.org/10.1007/s10817-017-9428-2
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1882291.1882320
https://doi.org/10.1109/IPDPSW.2012.302

Checking Data-Race Freedom of GPU Kernels, Compositionally 23

26. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:
Concolic verification and test generation for GPUs. In: Proceedings of PPoPP.
vol. 47, pp. 215–224. ACM (2012). https://doi.org/10.1145/2370036.2145844

27. Li, P., Li, G., Gopalakrishnan, G.: Practical symbolic race checking
of GPU programs. In: Proceedings of SC. pp. 179–190. IEEE (2014).
https://doi.org/10.1109/SC.2014.20

28. Li, P., Hu, X., Chen, D., Brock, J., Luo, H., Zhang, E.Z., Ding, C.: LD: Low-
overhead GPU race detection without access monitoring. Transactions on Architec-
ture and Code Optimization 14(1), 1–25 (2017). https://doi.org/10.1145/3046678

29. López, H.A., Marques, E.R.B., Martins, F., Ng, N., Santos, C., Vasconce-
los, V.T., Yoshida, N.: Protocol-based verification of message-passing par-
allel programs. In: Proceedings of OOPSLA. pp. 280–298. ACM (2015).
https://doi.org/10.1145/2814270.2814302

30. Ma, H., Diersen, S.R., Wang, L., Liao, C., Quinlan, D., Yang, Z.: Symbolic analysis
of concurrency errors in OpenMP programs. In: Proceedings of ICPP. pp. 510–516.
IEEE (2013). https://doi.org/10.1109/ICPP.2013.63

31. Muller, S.K., Hoffmann, J.: Modeling and analyzing evaluation cost of CUDA
kernels. Proceedings of the ACM on Programming Languages 5(POPL) (2021).
https://doi.org/10.1145/3434306

32. Peng, Y., Grover, V., Devietti, J.: CURD: A dynamic CUDA
race detector. In: Proceedings of PLDI. pp. 390–403. ACM (2018).
https://doi.org/10.1145/3192366.3192368

33. Pereira, P., Albuquerque, H., Marques, H., Silva, I., Carvalho, C., Cordeiro, L.,
Santos, V., Ferreira, R.: Verifying CUDA programs using SMT-based context-
bounded model checking. In: Proceedings of SAC. pp. 1648–1653. ACM (2016).
https://doi.org/10.1145/2851613.2851830

34. Ruetsch, G., Micikevicius, P.: Optimizing matrix transpose in CUDA. NVIDIA
CUDA SDK Application Note 18 (2009), https://www.cs.colostate.edu/~cs675/
MatrixTranspose.pdf

35. Vasconcelos, V.T.: Session types for linear multithreaded functional
programming. In: Proceedings of PPDP. pp. 1–6. ACM (2009).
https://doi.org/10.1145/1599410.1599411

36. Vasconcelos, V.T., Ravara, A., Gay, S.: Session types for functional mul-
tithreading. In: Proceedings of CONCUR. pp. 497–511. Springer (2004).
https://doi.org/10.1007/978-3-540-28644-8_32

37. Wu, M., Ouyang, Y., Zhou, H., Zhang, L., Liu, C., Zhang, Y.: Simulee: Detecting
CUDA synchronization bugs via memory-access modeling. In: Proceedings of ICSE.
pp. 937–948. ACM (2020). https://doi.org/10.1145/3377811.3380358

38. Zheng, M., Ravi, V.T., Qin, F., Agrawal, G.: GRace: A low-overhead mechanism
for detecting data races in GPU programs. In: Proceedings of PPoPP. pp. 135–146.
ACM (2011). https://doi.org/10.1145/1941553.1941574

39. Zheng, M., Ravi, V.T., Qin, F., Agrawal, G.: GMRace: Detecting data races in GPU
programs via a low-overhead scheme. Transactions on Parallel and Distributed
Systems 25(1), 104–115 (2014). https://doi.org/10.1109/TPDS.2013.44

https://doi.org/10.1145/2370036.2145844
https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1145/3046678
https://doi.org/10.1145/2814270.2814302
https://doi.org/10.1109/ICPP.2013.63
https://doi.org/10.1145/3434306
https://doi.org/10.1145/3192366.3192368
https://doi.org/10.1145/2851613.2851830
https://www.cs.colostate.edu/~cs675/MatrixTranspose.pdf
https://www.cs.colostate.edu/~cs675/MatrixTranspose.pdf
https://doi.org/10.1145/1599410.1599411
https://doi.org/10.1007/978-3-540-28644-8_32
https://doi.org/10.1145/3377811.3380358
https://doi.org/10.1145/1941553.1941574
https://doi.org/10.1109/TPDS.2013.44

	Checking Data-Race Freedom of GPU Kernels, Compositionally

